Gaussian Random Field Models for Spatial Data

Spatial data contain information about both the attribute of interest as well as its location. Examples can be found in a large number of disciplines including ecology, geology, epidemiology, geography, image analysis, meteorology, forestry, and geosciences. The location may be a set of coordinates, such as the latitude and longitude associated with an observed pollutant level, or it may be a small region such as a county associated with an observed disease rate. Following Cressie (1993), we categorize spatial data into three distinct types: (i) geostatistical or point-level data, as in the pollutant levels observed at several monitors across a region, (ii) lattice or ‘areal’ (regionally aggregated) data, for example U.S. disease rates provided by county, and (iii) point process data, where the locations themselves are random variables and of interest, as in the set of locations where a rare animal species was observed. Point processes where random variables associated with the random locations are also of interest

[1]  C. Wikle Spatial Modelling of Count Data: A Case Study in Modelling Breeding Bird Survey Data on Large Spatial Domains , 2002 .

[2]  Christian P. Robert,et al.  Bayesian computation for statistical models with intractable normalizing constants , 2008, 0804.3152.

[3]  M. Wall A close look at the spatial structure implied by the CAR and SAR models , 2004 .

[4]  Carol A. Gotway,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[5]  M. Fuentes Approximate Likelihood for Large Irregularly Spaced Spatial Data , 2007, Journal of the American Statistical Association.

[6]  J. Besag What is a statistical model? Discussion , 2002 .

[7]  Galin L. Jones,et al.  Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.

[8]  L. Mark Berliner,et al.  Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds , 2001 .

[9]  Brian D. Ripley,et al.  geoRglm: A Package for Generalised Linear Spatial Models , 2002 .

[10]  Gareth O. Roberts,et al.  Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .

[11]  Bradley P Carlin,et al.  spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. , 2007, Journal of statistical software.

[12]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[13]  Christopher J Paciorek,et al.  Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package. , 2007, Journal of statistical software.

[14]  Christopher J Paciorek,et al.  Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.

[15]  L Bernardinelli,et al.  Bayesian estimates of disease maps: how important are priors? , 1995, Statistics in medicine.

[16]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[17]  Piet M. T. Broersen,et al.  Autoregressive spectral analysis when observations are missing , 2004, Autom..

[18]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[19]  Mary Kathryn Cowles,et al.  Unified Geostatistical Modeling for Data Fusion and Spatial Heteroskedasticity with R Package ramps , 2008 .

[20]  Murali Haran,et al.  Parallel multivariate slice sampling , 2011, Stat. Comput..

[21]  B. Carlin,et al.  Accelerating Computation in Markov Random Field Models for Spatial Data via Structured MCMC , 2003 .

[22]  M. Marks,et al.  Phragmites australis (P. communis): threats, management and monitoring. , 1994 .

[23]  Julian Besag,et al.  Towards Bayesian image analysis , 1993 .

[24]  F. Dominici,et al.  On the use of generalized additive models in time-series studies of air pollution and health. , 2002, American journal of epidemiology.

[25]  A. V. Vecchia Estimation and model identification for continuous spatial processes , 1988 .

[26]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[27]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[28]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[29]  Mark S. Kaiser,et al.  Autologistic models with interpretable parameters , 2009 .

[30]  P. McCullagh What is a statistical model , 2002 .

[31]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[32]  Victor De Oliveira,et al.  Bayesian reference analysis for Gaussian Markov random fields , 2007 .

[33]  Noel A Cressie,et al.  The Construction of Multivariate Distributions from Markov Random Fields , 2000 .

[34]  J. Heikkinen,et al.  Fully Bayesian Approach to Image Restoration with an Application in Biogeography , 1994 .

[35]  James V. Zidek,et al.  Statistical Analysis of Environmental Space-Time Processes , 2006 .

[36]  Bradley P. Carlin,et al.  Bivariate spatial process modeling for constructing indicator or intensity weighted spatial CDFs , 2005 .

[37]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[38]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[39]  Julian Besag,et al.  Statistical Analysis of Field Experiments Using Neighbouring Plots , 1986 .

[40]  Douglas W. Nychka,et al.  Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets , 2008 .

[41]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[42]  Murali Haran,et al.  The Impacts of Social Capital on Infant Mortality in the U.S.: A Spatial Investigation , 2009 .

[43]  Hao Zhang On Estimation and Prediction for Spatial Generalized Linear Mixed Models , 2002, Biometrics.

[44]  N. Cressie,et al.  Statistics for Spatial Data. , 1992 .

[45]  Sudipto Banerjee,et al.  On Geodetic Distance Computations in Spatial Modeling , 2005, Biometrics.

[46]  Mary Kathryn Cowles,et al.  Reparameterized and Marginalized Posterior and Predictive Sampling for Complex Bayesian Geostatistical Models , 2009 .

[47]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[48]  Murali Haran,et al.  Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.

[49]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[50]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[51]  J. Monahan,et al.  Proper likelihoods for Bayesian analysis , 1992 .

[52]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[53]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[54]  J. Møller Perfect simulation of conditionally specified models , 1999 .

[55]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[56]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[57]  Malay Ghosh,et al.  Small Area Estimation: An Appraisal , 1994 .

[58]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[59]  James Allen Fill,et al.  Extension of Fill's perfect rejection sampling algorithm to general chains (Extended abstract) , 2000 .

[60]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[61]  Peter Clifford,et al.  Markov Random Fields in Statistics , 2012 .

[62]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[63]  D. Lindenmayer,et al.  Modelling the abundance of rare species: statistical models for counts with extra zeros , 1996 .

[64]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data , 2004 .

[65]  Norman L. Johnson,et al.  The Truncated Poisson , 1952 .

[66]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[67]  Rui Paulo Default priors for Gaussian processes , 2005 .

[68]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[69]  David Higdon,et al.  A process-convolution approach to modelling temperatures in the North Atlantic Ocean , 1998, Environmental and Ecological Statistics.

[70]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[71]  Jonathan M. Graham,et al.  Autologistic Model of Spatial Pattern of Phytophthora Epidemic in Bell Pepper: Effects of Soil Variables on Disease Presence , 1997 .

[72]  Matthew West,et al.  Priors and component structures in autoregressive time series models , 1999 .

[73]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[74]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[75]  J. Andrew Royle,et al.  A hierarchical approach to multivariate spatial modeling and prediction , 1999 .

[76]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[77]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[78]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[79]  Alf J. Isaksson,et al.  Multiple Optima in Identification of ARX Models Subject to Missing Data , 2002, EURASIP J. Adv. Signal Process..

[80]  Runze Li,et al.  Analysis of Computer Experiments Using Penalized Likelihood in Gaussian Kriging Models , 2005, Technometrics.

[81]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[82]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[83]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[84]  Victor De Oliveira,et al.  Objective Bayesian analysis of spatial data with measurement error , 2007 .

[85]  M P Wand,et al.  Generalized additive distributed lag models: quantifying mortality displacement. , 2000, Biostatistics.

[86]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[87]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[88]  J. A. Fill An interruptible algorithm for perfect sampling via Markov chains , 1998 .

[89]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[90]  James L. Rosenberger,et al.  A two‐stage model for incidence and prevalence in point‐level spatial count data , 2012 .

[91]  R. Waagepetersen,et al.  Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models , 2002, Biometrics.

[92]  V. D. Oliveira,et al.  Bayesian prediction of clipped Gaussian random fields , 2000 .

[93]  D. Nychka,et al.  Covariance Tapering for Interpolation of Large Spatial Datasets , 2006 .

[94]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[95]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[96]  Julian Besag,et al.  Digital Image Processing: Towards Bayesian image analysis , 1989 .

[97]  P. Speckman,et al.  Posterior distribution of hierarchical models using CAR(1) distributions , 1999 .

[98]  F. Dominici,et al.  Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. , 2006, JAMA.

[99]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[100]  Zhiyi Chi,et al.  Approximating likelihoods for large spatial data sets , 2004 .

[101]  M. Haran,et al.  Estimating the Risk of a Crop Epidemic From Coincident Spatio-temporal Processes , 2010 .

[102]  D. Brook On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems , 1964 .

[103]  Stephen L. Rathbun,et al.  A spatial zero-inflated poisson regression model for oak regeneration , 2006, Environmental and Ecological Statistics.

[104]  Bradley P. Carlin,et al.  Bayesian Methods for Data Analysis , 2008 .

[105]  Gardar Johannesson,et al.  Dynamic multi-resolution spatial models , 2007, Environmental and Ecological Statistics.

[106]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[107]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[108]  Andrew B. Lawson,et al.  Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology , 2008 .

[109]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[110]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[111]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[112]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[113]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[114]  Na Li,et al.  Simple Parallel Statistical Computing in R , 2007 .

[115]  A. Gelfand,et al.  Proper multivariate conditional autoregressive models for spatial data analysis. , 2003, Biostatistics.

[116]  Scott L. Zeger,et al.  Harvesting-resistant estimates of air pollution effects on mortality. , 1999 .

[117]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[118]  D. M. Keenan,et al.  Towards automated image understanding , 1989 .

[119]  S. Lele,et al.  A Composite Likelihood Approach to Binary Spatial Data , 1998 .

[120]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[121]  J. Ferrándiz,et al.  Spatial interaction between neighbouring counties: cancer mortality data in Valencia Spain. , 1995, Biometrics.

[122]  J. Schwartz,et al.  Harvesting and long term exposure effects in the relation between air pollution and mortality. , 2000, American journal of epidemiology.

[123]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[124]  Sylvia Richardson,et al.  Bayesian mapping of disease , 1995 .

[125]  Herbert K. H. Lee,et al.  Multiscale Modeling: A Bayesian Perspective , 2007 .

[126]  K. Saltonstall,et al.  Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[127]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[128]  R. Kohn,et al.  Bayesian estimation of an autoregressive model using Markov chain Monte Carlo , 1996 .

[129]  Jun Zhu,et al.  Markov chain Monte Carlo for a Spatial-Temporal Autologistic Regression Model , 2008 .

[130]  Alan E. Gelfand,et al.  Zero-inflated models with application to spatial count data , 2002, Environmental and Ecological Statistics.

[131]  Charles J. Geyer,et al.  Estimation and Optimization of Functions , 1996 .

[132]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[133]  Gene H. Golub,et al.  Matrix computations , 1983 .

[134]  H. Rue,et al.  On Block Updating in Markov Random Field Models for Disease Mapping , 2002 .

[135]  F. Dominici,et al.  Ozone and short-term mortality in 95 US urban communities, 1987-2000. , 2004, JAMA.

[136]  Shaowen Wang,et al.  Parallelizing MCMC for Bayesian spatiotemporal geostatistical models , 2007, Stat. Comput..

[137]  F. Dominici,et al.  Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. , 2000, The New England journal of medicine.

[138]  Dan Cornford,et al.  Sequential, Bayesian Geostatistics: A Principled Method for Large Data Sets , 2005 .

[139]  James Durbin,et al.  The fitting of time series models , 1960 .

[140]  Galin L. Jones,et al.  On the applicability of regenerative simulation in Markov chain Monte Carlo , 2002 .

[141]  Erricos John Kontoghiorghes,et al.  Handbook of Parallel Computing and Statistics , 2005 .

[142]  Noel A Cressie,et al.  Modeling Poisson variables with positive spatial dependence , 1997 .

[143]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[144]  David Bruce Wilson,et al.  How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph , 1998, J. Algorithms.

[145]  J. Monahan Fully Bayesian analysis of ARMA time series models , 1983 .

[146]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .