Criterion-robust optimal designs for model discrimination and parameter estimation: Multivariate polynomial regression case
暂无分享,去创建一个
[1] Weng Kee Wong,et al. ON THE CONSTRUCTION OF Grm-OPTIMAL DESIGNS , 1999 .
[2] R. H. Farrell,et al. Optimum multivariate designs , 1967 .
[3] Norbert Gaffke,et al. Computing optimal approximate invariant designs for cubic regression on multidimensional balls and cubes , 1995 .
[4] W. J. Studden,et al. OPTIMAL DESIGNS FOR WEIGHTED POLYNOMIAL REGRESSION USING CANONICAL MOMENTS , 1982 .
[5] W. J. Studden. $D_s$-Optimal Designs for Polynomial Regression Using Continued Fractions , 1980 .
[6] W. J. Studden. Note on some $\phi_p$-Optimal Designs for Polynomial Regression , 1989 .
[7] Holger Dette,et al. The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis , 1997 .
[8] W. J. Studden. Some Robust-Type D-Optimal Designs in Polynomial Regression , 1982 .
[9] Ewaryst Rafajłowicz,et al. Optimum experimental design for a regression on a hypercube-generalization of Hoel's result , 1988 .
[10] W. Wong. G-optimal designs for multi-factor experiments with heteroscedastic errors , 1994 .
[11] James L. Rosenberger,et al. Experimental Designs for Model Discrimination , 1993 .
[12] Holger Dette,et al. Optimal discrimination designs for multifactor experiments , 1997 .
[13] W. J. Studden,et al. Efficient $D_s$-Optimal Designs for Multivariate Polynomial Regression on the $q$-Cube , 1988 .
[14] Holger Dette,et al. Robust designs for multivariate polynomial regression on the d-cube , 1994 .
[15] J. Kiefer,et al. Optimum Designs in Regression Problems , 1959 .
[16] E. Rafajłowicz,et al. When product type experimental design is optimal? Brief survey and new results , 1992 .
[17] M. Zen,et al. SOME CRITERION-ROBUST OPTIMAL DESIGNS FOR THE DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER ESTIMATION , 2002 .
[18] Mei-Mei Zen,et al. Criterion-robust optimal designs for model discrimination and parameter estimation in Fourier regression models , 2004 .
[19] M. Skibinsky. Principal representations and canonical moment sequences for distributions on an interval , 1986 .
[20] M. Skibinsky. The range of the (n + 1)th moment for distributions on [0, 1] , 1967 .