Spin-orbit torque for field-free switching in C_{3v} crystals

Spin-orbit torques in noncentrosymmetric polycrystalline magnetic heterostructures are usually described in terms of field-like and damping-like torques. However, materials with a lower symmetry point group can exhibit torques whose behavior substantially deviates from the conventional ones. In particular, based on symmetry arguments it was recently proposed that systems belonging to the C_{3v} point group display spin-orbit torques that can promote field-free switching [Liu et al. Nature Nanotechnology 16, 277 (2021)]. In the present work, we analyze the general form of the torques expected in C3v crystals using the Invariant Theory. We uncover several new components that arise from the coexistence of the three-fold rotation and mirror symmetries. Using both tight binding model and first principles simulations, we show that these unconventional torque components arise from the onset of trigonal warping of the Fermi surface and can be as large as the damping-like torque. In other words, the Fermi surface warping is a key indicator to the onset of field-free switching in low symmetry crystals.

[1]  G. M. De Luca,et al.  Ferromagnetic Quasi-Two-Dimensional Electron Gas with Trigonal Crystal Field Splitting , 2022, ACS Applied Electronic Materials.

[2]  Byong‐Guk Park,et al.  Efficient spin–orbit torque in magnetic trilayers using all three polarizations of a spin current , 2022, Nature Electronics.

[3]  A. Manchon,et al.  Unconventional Robust Spin-Transfer Torque in Noncollinear Antiferromagnetic Junctions. , 2022, Physical review letters.

[4]  S. Louie,et al.  Multiple strong topological gaps and hexagonal warping in Bi4Te3 , 2022, Physical Review B.

[5]  Han Wang,et al.  Field-Free Switching of Perpendicular Magnetization Induced by Longitudinal Spin-Orbit-Torque Gradient , 2022, Physical Review Applied.

[6]  Q. Wang,et al.  Observation of Spin Splitting Torque in a Collinear Antiferromagnet RuO_{2}. , 2021, Physical review letters.

[7]  D. Muller,et al.  Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide , 2021, Nature Electronics.

[8]  Jiaqiang Yan,et al.  Field-free deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2 , 2020, 2012.12388.

[9]  Xiufeng Han,et al.  Field‐Free Spin–Orbit Torque Switching in Perpendicularly Magnetized Synthetic Antiferromagnets , 2021, Advanced Functional Materials.

[10]  T. Higo,et al.  Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet , 2021, Nature Communications.

[11]  C. Song,et al.  Control of spin-orbit torques through magnetic symmetry in differently oriented noncollinear antiferromagnetic Mn3Pt , 2021, Physical Review B.

[12]  Han Wang,et al.  Field-free magnetization switching induced by the unconventional spin–orbit torque from WTe2 , 2021 .

[13]  F. Pan,et al.  Observation of the antiferromagnetic spin Hall effect , 2021, Nature Materials.

[14]  H. Kohno,et al.  Spintronic properties of topological surface Dirac electrons with hexagonal warping , 2021 .

[15]  Han Wang,et al.  Symmetry-dependent field-free switching of perpendicular magnetization , 2021, Nature Nanotechnology.

[16]  Min-Gu Kang,et al.  Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures , 2020, Nature Communications.

[17]  S. Roche,et al.  Janus monolayers of magnetic transition metal dichalcogenides as an all-in-one platform for spin-orbit torque , 2020, Physical Review B.

[18]  Hyun-Woo Lee,et al.  Gigantic Current Control of Coercive Field and Magnetic Memory Based on Nanometer‐Thin Ferromagnetic van der Waals Fe3GeTe2 , 2020, Advanced materials.

[19]  A. Manchon,et al.  Symmetrized decomposition of the Kubo-Bastin formula , 2020, 2005.04678.

[20]  P. Haney,et al.  Unconventional spin-orbit torque in transition metal dichalcogenide/ferromagnet bilayers from first-principles calculations. , 2020, Physical review. B.

[21]  A. Manchon,et al.  Elusive Dzyaloshinskii-Moriya interaction in monolayer Fe3GeTe2 , 2020, 2004.01616.

[22]  Kang L. Wang,et al.  Deterministic spin-orbit torque switching by a light-metal insertion. , 2020, Nano letters.

[23]  D. Ralph,et al.  Controlling spin current polarization through non-collinear antiferromagnetism , 2019, Nature Communications.

[24]  Kang L. Wang,et al.  Field-Free Spin-Orbit Torque Switching of Perpendicular Magnetization by the Rashba Interface. , 2019, ACS applied materials & interfaces.

[25]  S. Pennycook,et al.  Current-induced magnetization switching in all-oxide heterostructures , 2019, Nature Nanotechnology.

[26]  Hyunsoo Yang,et al.  All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures , 2019, Nature Nanotechnology.

[27]  R. Guo,et al.  Free field electric switching of perpendicularly magnetized thin film by spin current gradient. , 2019, ACS applied materials & interfaces.

[28]  Yihong Wu,et al.  Spin-Orbit Torque in a Single Ferromagnetic Layer Induced by Surface Spin Rotation , 2019, Physical Review Applied.

[29]  M. Deng,et al.  In-plane magnetization effect on current-induced spin-orbit torque in a ferromagnet/topological insulator bilayer with hexagonal warping , 2019, Physical Review B.

[30]  Xiaoping Zhou,et al.  Field-Free Deterministic Magnetization Switching with Ultralow Current Density in Epitaxial Au/Fe4N Bilayer Films. , 2019, ACS applied materials & interfaces.

[31]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[32]  Muhammad Ikhlas,et al.  Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet , 2019, Nature.

[33]  A. Brataas,et al.  Current Control of Magnetism in Two-Dimensional Fe_{3}GeTe_{2}. , 2018, Physical review letters.

[34]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[35]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[36]  M. Stiles,et al.  Spin currents and spin–orbit torques in ferromagnetic trilayers , 2018, Nature Materials.

[37]  M. Stiles,et al.  Interface-Generated Spin Currents. , 2018, Physical review letters.

[38]  D. Ralph,et al.  Spin-Orbit Torques in NbSe2/Permalloy Bilayers. , 2018, Nano letters.

[39]  A. Manchon,et al.  Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets. , 2017, Physical review letters.

[40]  A. Tulapurkar,et al.  Observation of Anomalous Spin Torque Generated by a Ferromagnet , 2017, Physical Review Applied.

[41]  Yan Sun,et al.  Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling , 2017, New Journal of Physics.

[42]  D. Ralph,et al.  Thickness dependence of spin-orbit torques generated by WTe2 , 2017, 1707.03757.

[43]  C. Felser,et al.  Spin-Polarized Current in Noncollinear Antiferromagnets. , 2017, Physical review letters.

[44]  F. Freimuth,et al.  Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets , 2016, 1604.07590.

[45]  Plamen Stamenov,et al.  Spin-orbit torque switching without an external field using interlayer exchange coupling. , 2016, Nature nanotechnology.

[46]  Jong-Ryul Jeong,et al.  Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. , 2016, Nature nanotechnology.

[47]  D. Ralph,et al.  Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers , 2016, Nature Physics.

[48]  Stéphane Auffret,et al.  Spin-orbit torque magnetization switching controlled by geometry. , 2016, Nature nanotechnology.

[49]  A. Manchon,et al.  Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers. , 2015, Physical review letters.

[50]  C. Gould,et al.  Room-temperature spin–orbit torque in NiMnSb , 2015, Nature Physics.

[51]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[52]  J. Bokor,et al.  Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy , 2014, Proceedings of the National Academy of Sciences.

[53]  Kang L. Wang,et al.  Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. , 2013, Nature nanotechnology.

[54]  S. Urazhdin,et al.  Magnetic nano-oscillator driven by pure spin current. , 2012, Nature materials.

[55]  D. Ralph,et al.  Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. , 2012, Physical review letters.

[56]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[57]  H. Ohno,et al.  Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As , 2010 .

[58]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[59]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[60]  J. Chu,et al.  STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. , 2009, Physical review letters.

[61]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[62]  M. Dyakonov,et al.  Swapping spin currents: interchanging spin and flow directions. , 2009, Physical review letters.

[63]  Jacek K. Furdyna,et al.  Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field , 2008, 0812.3160.

[64]  Frank Herman,et al.  Symmetry Principles in Solid State and Molecular Physics , 1974 .