Fast inference in nonlinear dynamical systems using gradient matching

Parameter inference in mechanistic models of coupled differential equations is a topical problem. We propose a new method based on kernel ridge regression and gradient matching, and an objective function that simultaneously encourages goodness of fit and penalises inconsistencies with the differential equations. Fast minimisation is achieved by exploiting partial convexity inherent in this function, and setting up an iterative algorithm in the vein of the EM algorithm. An evaluation of the proposed method on various benchmark data suggests that it compares favourably with state-of-the-art alternatives.

[1]  V. Vinciotti,et al.  Statistical Reconstruction of Transcription Factor Activity Using Michaelis–Menten Kinetics , 2007, Biometrics.

[2]  Neil D. Lawrence,et al.  Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes , 2008, NIPS.

[3]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[4]  Hulin Wu,et al.  Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models , 2008, Journal of the American Statistical Association.

[5]  David Campbell,et al.  Smooth functional tempering for nonlinear differential equation models , 2012, Stat. Comput..

[6]  A. J. Lotka Analytical Note on Certain Rhythmic Relations in Organic Systems , 1920, Proceedings of the National Academy of Sciences.

[7]  Dirk Husmeier,et al.  ODE parameter inference using adaptive gradient matching with Gaussian processes , 2013, AISTATS.

[8]  David Barber,et al.  Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations , 2014, ICML.

[9]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[10]  C. H. Poskar,et al.  Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models , 2011, EURASIP J. Bioinform. Syst. Biol..

[11]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[12]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[13]  Ernst Wit,et al.  Reproducing kernel Hilbert space based estimation of systems of ordinary differential equations , 2013, Pattern Recognit. Lett..

[14]  Richard Wilkinson,et al.  Accelerating ABC methods using Gaussian processes , 2014, AISTATS.

[15]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[16]  Ivan Vujačić,et al.  Inferring latent gene regulatory network kinetics , 2013, Statistical applications in genetics and molecular biology.

[17]  Dirk Husmeier,et al.  Controversy in mechanistic modelling with Gaussian processes , 2015, ICML.