Visualization of term discrimination analysis

A visual term discrimination value analysis method is introduced using a document density space within a distance–angle-based visual information retrieval environment. The term discrimination capacity is analyzed using the comparison of the distance and angle-based visual representations with and without a specified term, thereby allowing the user to see the impact of the term on individual documents within the density space. Next, the concept of a “term density space” is introduced for term discrimination analysis. Using this concept, a term discrimination capacity for distinguishing one term from others in the space can also be visualized within the visual space. Applications of these methods facilitate more effective assignment of term weights to index terms within documents and may assist searchers in the selection of search terms.

[1]  Jean-Daniel Fekete,et al.  Compus: visualization and analysis of structured documents for understanding social life in the 16th century , 2000, DL '00.

[2]  Martin Brooks,et al.  Interactive Graphical Queries for Bibliographic Search , 1999, J. Am. Soc. Inf. Sci..

[3]  Jonathan Helfman Similarity patterns in language , 1994, Proceedings of 1994 IEEE Symposium on Visual Languages.

[4]  Peter Willett,et al.  An algorithm for the calculation of exact term discrimination values , 1985, Inf. Process. Manag..

[5]  Ben Shneiderman,et al.  Visualizing digital library search results with categorical and hierarchical axes , 2000, DL '00.

[6]  Robert R. Korfhage,et al.  BIRD: browsing interface for the retrieval of documents , 1994, Proceedings of 1994 IEEE Symposium on Visual Languages.

[7]  Peter Willett,et al.  Inclusion of Relevance Information in the Term Discrimination Model , 1989, J. Documentation.

[8]  Katy Börner,et al.  Extracting and visualizing semantic structures in retrieval results for browsing , 2000, DL '00.

[9]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[10]  Ben Shneiderman,et al.  A graphical filter/flow representation of Boolean queries: a prototype implementation and evaluation , 1993 .

[11]  Robert R. Korfhage,et al.  Desktop visualization , 1994, Proceedings of 1994 IEEE Symposium on Visual Languages.

[12]  Edie Rasmussen,et al.  Visual information retrieval environments , 1999 .

[13]  Gary Marchionini,et al.  A self-organizing semantic map for information retrieval , 1991, SIGIR '91.

[14]  A. Michard,et al.  Graphical presentation of boolean expressions in a database query language: design notes and an ergonomic evaluation , 1982 .

[15]  James A. Wise The ecological approach to text visualization , 1999 .

[16]  Jae-Woo Chang,et al.  Multikey access methods based on term discrimination and signature clustering , 1989, SIGIR '89.

[17]  Henry Small Visualizing science by citation mapping , 1999 .

[18]  Wendy A. Lawrence-Fowler,et al.  Integrating query thesaurus, and documents through a common visual representation , 1991, SIGIR '91.

[19]  Robert R. Korfhage,et al.  GUIDO, a visual tool for retrieving documents , 1994, Proceedings of 1994 IEEE Symposium on Visual Languages.

[20]  Marti A. Hearst TileBars: visualization of term distribution information in full text information access , 1995, CHI '95.

[21]  Robert R. Korfhage,et al.  DARE: distance and angle retrieval environment: a tale of the two measures , 1999 .

[22]  Edward A. Fox,et al.  Envision: a user-centered database of computer science literature , 1995, CACM.

[23]  George W. Furnas,et al.  Considerations for information environments and the NaviQue workspace , 1998, DL '98.

[24]  Peter Willett,et al.  An improved algorithm for the calculation of exact term discrimination values , 1988, Inf. Process. Manag..