A dusty compact object bridging galaxies and quasars at cosmic dawn

[1]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[2]  I. Davidzon,et al.  The Evolving Interstellar Medium of Star-forming Galaxies, as Traced by Stardust , 2021, The Astrophysical Journal.

[3]  P. P. van der Werf,et al.  Normal, dust-obscured galaxies in the epoch of reionization , 2021, Nature.

[4]  T. Nagao,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIV. A Candidate Type II Quasar at z = 6.1292 , 2021, The Astrophysical Journal.

[5]  P. P. van der Werf,et al.  Significant Dust-obscured Star Formation in Luminous Lyman-break Galaxies at z ∼ 7–8 , 2021, The Astrophysical Journal.

[6]  D. Stern,et al.  Kinematics and star formation of high-redshift hot dust-obscured quasars as seen by ALMA , 2021, Astronomy & Astrophysics.

[7]  G. Zamorani,et al.  Chandra and Magellan/FIRE follow-up observations of PSO167–13: An X-ray weak QSO at z = 6.515 , 2021, Astronomy & Astrophysics.

[8]  H. Rix,et al.  The Kinematics of z ≳ 6 Quasar Host Galaxies , 2021, The Astrophysical Journal.

[9]  Xiaohui Fan,et al.  A Luminous Quasar at Redshift 7.642 , 2021, 2101.03179.

[10]  J. Silverman,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XII. Extended [C ii] Structure (Merger or Outflow) in a z = 6.72 Red Quasar , 2021, The Astrophysical Journal.

[11]  Xiaohui Fan,et al.  Revealing the Accretion Physics of Supermassive Black Holes at Redshift z ∼ 7 with Chandra and Infrared Observations , 2020, 2011.12458.

[12]  H. Rix,et al.  Kiloparsec-scale ALMA Imaging of [C ii] and Dust Continuum Emission of 27 Quasar Host Galaxies at z ∼ 6 , 2020, The Astrophysical Journal.

[13]  T. Díaz-Santos,et al.  Fast Outflows in Hot Dust-obscured Galaxies Detected with Keck/NIRES , 2020, The Astrophysical Journal.

[14]  H. Rix,et al.  The X-SHOOTER/ALMA Sample of Quasars in the Epoch of Reionization. I. NIR Spectral Modeling, Iron Enrichment, and Broad Emission Line Properties , 2020, The Astrophysical Journal.

[15]  W. Brandt,et al.  X-ray properties of dust-obscured galaxies with broad optical/UV emission lines , 2020, 2009.10763.

[16]  D. Coe,et al.  SuperBoRG: Exploration of Point Sources at z ∼ 8 in HST Parallel Fields , 2020, The Astrophysical Journal.

[17]  K. Jahnke,et al.  Probing the Nature of High-redshift Weak Emission Line Quasars: A Young Quasar with a Starburst Host Galaxy , 2020, The Astrophysical Journal.

[18]  Y. Shu,et al.  The discovery of the most UV–Ly α luminous star-forming galaxy: a young, dust- and metal-poor starburst with QSO-like luminosities , 2020, 2009.02177.

[19]  D. Caprioli,et al.  Kinetic Simulations of Cosmic-Ray-modified Shocks. I. Hydrodynamics , 2020, The Astrophysical Journal.

[20]  W. Brandt,et al.  On the Fraction of X-Ray-weak Quasars from the Sloan Digital Sky Survey , 2020, The Astrophysical Journal.

[21]  T. Nagao,et al.  Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). IX. Identification of two red quasars at z > 5.6 , 2020, Publications of the Astronomical Society of Japan.

[22]  Linhua Jiang,et al.  Pōniuā‘ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole , 2020, The Astrophysical Journal.

[23]  Yu Feng,et al.  QSO obscuration at high redshift (z ≳ 7): predictions from the bluetides simulation , 2020 .

[24]  D. Elbaz,et al.  GOODS-ALMA: The slow downfall of star formation in z = 2–3 massive galaxies , 2020, Astronomy & Astrophysics.

[25]  F. Civano,et al.  Connecting the metallicity dependence and redshift evolution of high-mass X-ray binaries , 2020, 2004.13033.

[26]  G. Cresci,et al.  The ALMA view of the high-redshift relation between supermassive black holes and their host galaxies , 2020, Astronomy & Astrophysics.

[27]  D. Elbaz,et al.  Deceptively cold dust in the massive starburst galaxy GN20 at z ∼ 4 , 2020, Astronomy & Astrophysics.

[28]  N. Yoshida,et al.  ALMA uncovers the [C ii] emission and warm dust continuum in a z = 8.31 Lyman break galaxy , 2020, Monthly Notices of the Royal Astronomical Society.

[29]  E. Pellegrini,et al.  [C i](1–0) and [C i](2–1) in Resolved Local Galaxies , 2019, The Astrophysical Journal.

[30]  Z. Haiman,et al.  The Assembly of the First Massive Black Holes , 2019, 1911.05791.

[31]  T. Nagao,et al.  Large Population of ALMA Galaxies at z > 6 with Very High [O iii] 88 μm to [C ii] 158 μm Flux Ratios: Evidence of Extremely High Ionization Parameter or PDR Deficit? , 2019, The Astrophysical Journal.

[32]  A. Coil,et al.  The MOSDEF Survey: The Metallicity Dependence of X-Ray Binary Populations at z ∼ 2 , 2019, The Astrophysical Journal.

[33]  G. Zamorani,et al.  The X-ray properties of z > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe , 2019, Astronomy & Astrophysics.

[34]  D. Elbaz,et al.  A dominant population of optically invisible massive galaxies in the early Universe , 2019, Nature.

[35]  F. Davies,et al.  Evidence for Low Radiative Efficiency or Highly Obscured Growth of z > 7 Quasars , 2019, The Astrophysical Journal.

[36]  H. Rix,et al.  An ALMA Multiline Survey of the Interstellar Medium of the Redshift 7.5 Quasar Host Galaxy J1342+0928 , 2019, The Astrophysical Journal.

[37]  E. Schinnerer,et al.  Discovery of Four Apparently Cold Dusty Galaxies at z = 3.62–5.85 in the COSMOS Field: Direct Evidence of Cosmic Microwave Background Impact on High-redshift Galaxy Observables , 2019, The Astrophysical Journal.

[38]  M. Im,et al.  High Star Formation Rates of Low Eddington Ratio Quasars at z ≳ 6 , 2019, The Astrophysical Journal.

[39]  G. Brammer Grizli: Grism redshift and line analysis software , 2019 .

[40]  J. Silverman,et al.  Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies , 2019, Publications of the Astronomical Society of Japan.

[41]  Masayuki Tanaka,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1 ≤ z ≤ 6.7 , 2019, The Astrophysical Journal.

[42]  Philip J. Tait,et al.  Discovery of the First Low-luminosity Quasar at z > 7 , 2019, The Astrophysical Journal.

[43]  Chao Liu,et al.  Ripple Patterns in In-plane Velocities of OB Stars from LAMOST and Gaia , 2019, The Astrophysical Journal.

[44]  H. Rix,et al.  No Evidence for Enhanced [O iii] 88 μm Emission in a z ∼ 6 Quasar Compared to Its Companion Starbursting Galaxy , 2018, The Astrophysical Journal.

[45]  R. Maiolino,et al.  The infrared-luminous progenitors of high-zquasars , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  R. Assef,et al.  The multiple merger assembly of a hyperluminous obscured quasar at redshift 4.6 , 2018, Science.

[47]  K. Mawatari,et al.  Detections of [O iii] 88 μm in two quasars in the reionization epoch , 2018, Publications of the Astronomical Society of Japan.

[48]  M. Dickinson,et al.  A Survey of Atomic Carbon [C i] in High-redshift Main-sequence Galaxies , 2018, The Astrophysical Journal.

[49]  E. Wright,et al.  Super-Eddington Accretion in the WISE-selected Extremely Luminous Infrared Galaxy W2246−0526 , 2018, The Astrophysical Journal.

[50]  F. Nakamura,et al.  Cluster formation in the W 40 and Serpens South complex triggered by the expanding H ii region , 2018, Publications of the Astronomical Society of Japan.

[51]  M. Ouchi,et al.  Morphologies of ∼190,000 Galaxies at z = 0–10 Revealed with HST Legacy Data. III. Continuum Profile and Size Evolution of Lyα Emitters , 2018, The Astrophysical Journal.

[52]  D. Elbaz,et al.  The [C ii] emission as a molecular gas mass tracer in galaxies at low and high redshifts , 2018, Monthly Notices of the Royal Astronomical Society.

[53]  M. Paolillo,et al.  The X-ray/UV ratio in active galactic nuclei: dispersion and variability , 2018, Astronomy & Astrophysics.

[54]  G. Richards,et al.  Connecting the X-ray properties of weak-line and typical quasars: testing for a geometrically thick accretion disk , 2018, Monthly Notices of the Royal Astronomical Society.

[55]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[56]  J. Dunlop,et al.  The Dust and [C ii] Morphologies of Redshift ∼4.5 Sub-millimeter Galaxies at ∼200 pc Resolution: The Absence of Large Clumps in the Interstellar Medium at High-redshift , 2018, 1804.03663.

[57]  F. Owen Deep JVLA Imaging of GOODS-N at 20 cm , 2018, 1803.05455.

[58]  D. Elbaz,et al.  GOODS-ALMA: 1.1 mm galaxy survey , 2018, Astronomy & Astrophysics.

[59]  M. Strauss,et al.  Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at z ∼ 6 studied with ALMA , 2018, 1802.05742.

[60]  China.,et al.  The Spectral Energy Distribution of the Hyperluminous, Hot Dust-obscured Galaxy W2246–0526 , 2018, 1802.01865.

[61]  H. Rix,et al.  An ALMA [C ii] Survey of 27 Quasars at z > 5.94 , 2018, The Astrophysical Journal.

[62]  Florida,et al.  Galaxy growth in a massive halo in the first billion years of cosmic history , 2017, Nature.

[63]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[64]  D. Walton,et al.  Heavy X-ray obscuration in the most luminous galaxies discovered by WISE , 2017, 1712.00031.

[65]  A. Omont,et al.  A Wide Dispersion in Star Formation Rate and Dynamical Mass of 108 Solar Mass Black Hole Host Galaxies at Redshift 6 , 2017, 1710.02212.

[66]  H. Rix,et al.  Physical Properties of 15 Quasars at z ≳ 6.5 , 2017, 1710.01251.

[67]  Benjamin D. Johnson,et al.  Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties , 2017, 1709.04469.

[68]  J. E. Carlstrom,et al.  ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ∼ 7 , 2017, 1705.07912.

[69]  W. Brandt,et al.  The X-ray properties of z ~ 6 luminous quasars , 2017, 1704.08693.

[70]  H. Rix,et al.  Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6 , 2017, Nature.

[71]  Philip J. Tait,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0 , 2019, The Astrophysical Journal.

[72]  O. Fèvre,et al.  The VLA-COSMOS 3 GHz Large Project: The infrared- radio correlation of star-forming galaxies and AGN to z ≲ 6 , 2017, 1703.09723.

[73]  M. Dickinson,et al.  “Super-deblended” Dust Emission in Galaxies. I. The GOODS-North Catalog and the Cosmic Star Formation Rate Density out to Redshift 6 , 2017, 1703.05281.

[74]  M. Ouchi,et al.  Demonstrating a New Census of Infrared Galaxies with ALMA (DANCING-ALMA). I. FIR Size and Luminosity Relation at z = 0–6 Revealed with 1034 ALMA Sources , 2017, 1703.02138.

[75]  R. Ellis,et al.  Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy , 2017, 1703.02039.

[76]  B. Weiner,et al.  The GOODS-N Jansky VLA 10 GHz Pilot Survey: Sizes of Star-forming μJY Radio Sources , 2017, 1702.06963.

[77]  P. Hewett,et al.  The Compact, ∼1 kpc Host Galaxy of a Quasar at a Redshift of 7.1 , 2017, 1702.03852.

[78]  L. Cowie,et al.  A Submillimeter Perspective on the GOODS Fields (SUPER GOODS). I. An Ultradeep SCUBA-2 Survey of the GOODS-N , 2017, 1702.03002.

[79]  R. Schneider,et al.  Faint progenitors of luminous z ∼ 6 quasars: Why do not we see them? , 2016, 1612.04188.

[80]  B. Winkel,et al.  HI4PI: a full-sky H i survey based on EBHIS and GASS , 2016, 1610.06175.

[81]  G. Richards,et al.  Extremely red quasars in BOSS , 2016, 1609.07241.

[82]  E. I. Robson,et al.  The SCUBA-2 Cosmology Legacy Survey: 850 μm maps, catalogues and number counts , 2016, 1607.03904.

[83]  J. Dunlop,et al.  Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope , 2016, 1605.05325.

[84]  D. Schneider,et al.  THE EVOLUTION OF NORMAL GALAXY X-RAY EMISSION THROUGH COSMIC HISTORY: CONSTRAINTS FROM THE 6 MS CHANDRA DEEP FIELD-SOUTH , 2016, 1604.06461.

[85]  J. Carlstrom,et al.  ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.

[86]  Philip J. Tait,et al.  SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 , 2016, 1603.02281.

[87]  Jay Anderson Empirical Models for the WFC3/IR PSF , 2016 .

[88]  W. Brandt,et al.  THE 2 Ms CHANDRA DEEP FIELD-NORTH SURVEY AND THE 250 Ks EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY: IMPROVED POINT-SOURCE CATALOGS , 2016, 1602.06299.

[89]  Bradley M. Peterson,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: VELOCITY SHIFTS OF QUASAR EMISSION LINES , 2016, 1602.03894.

[90]  G. Risaliti,et al.  THE TIGHT RELATION BETWEEN X-RAY AND ULTRAVIOLET LUMINOSITY OF QUASARS , 2016, 1602.01090.

[91]  M. Volonteri,et al.  From the first stars to the first black holes , 2016, 1601.07915.

[92]  I. Pâris,et al.  Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars , 2015, 1512.02642.

[93]  O. Ilbert,et al.  ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.

[94]  L. Christensen,et al.  An X-shooter composite of bright 1 < z < 2 quasars from UV to infrared , 2015, 1510.08058.

[95]  M. Volonteri,et al.  RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE , 2015, 1508.06274.

[96]  F. Walter,et al.  AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: PHYSICAL PROPERTIES DERIVED FROM ULTRAVIOLET-TO-RADIO MODELING , 2015, 1504.04376.

[97]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.

[98]  G. Richards,et al.  X-RAY INSIGHTS INTO THE NATURE OF PHL 1811 ANALOGS AND WEAK EMISSION-LINE QUASARS: UNIFICATION WITH A GEOMETRICALLY THICK ACCRETION DISK? , 2015, 1503.02085.

[99]  A. Omont,et al.  STAR FORMATION RATE AND DYNAMICAL MASS OF 108 SOLAR MASS BLACK HOLE HOST GALAXIES AT REDSHIFT 6 , 2015, 1501.07538.

[100]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[101]  G. Richards,et al.  MINING FOR DUST IN TYPE 1 QUASARS , 2014, 1412.7039.

[102]  R. Schneider,et al.  High-redshift quasars host galaxies: is there a stellar mass crisis? , 2014, 1409.2873.

[103]  G. Cresci,et al.  The MBH-M* relation for X-ray-obscured, red QSOs at 1.2 < z < 2.6 , 2014, 1406.6094.

[104]  A. Myers,et al.  Extremely red quasars from SDSS, BOSS and WISE: classification of optical spectra , 2014, 1405.1047.

[105]  H. Rix,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF QSOs AT z > 5: COMMON ACTIVE GALACTIC NUCLEUS-HEATED DUST AND OCCASIONALLY STRONG STAR-FORMATION , 2014, 1402.5976.

[106]  Christopher E. Moody,et al.  CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2–3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES , 2013, 1311.5559.

[107]  S. Djorgovski,et al.  DUST REDDENED QUASARS IN FIRST AND UKIDSS: BEYOND THE TIP OF THE ICEBERG , 2013, 1309.6626.

[108]  Arizona State University,et al.  EXPLAINING THE [C ii]157.7 μm DEFICIT IN LUMINOUS INFRARED GALAXIES—FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE , 2013, 1307.2635.

[109]  R. Bouwens,et al.  UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.

[110]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[111]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[112]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[113]  Xiaohui Fan,et al.  STAR FORMATION AND GAS KINEMATICS OF QUASAR HOST GALAXIES AT z ∼ 6: NEW INSIGHTS FROM ALMA , 2013, 1302.4154.

[114]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.

[115]  E. Glikman,et al.  SPITZER OBSERVATIONS OF YOUNG RED QUASARS , 2012, 1208.4585.

[116]  M. Volonteri The Formation and Evolution of Massive Black Holes , 2012, Science.

[117]  H. Ferguson,et al.  NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z ≳ 6.5, , 2012, 1207.5798.

[118]  S. Djorgovski,et al.  FIRST–2MASS RED QUASARS: TRANSITIONAL OBJECTS EMERGING FROM THE DUST , 2012, 1207.2175.

[119]  J. Miles,et al.  [C ii] 158 μm LUMINOSITIES AND STAR FORMATION RATE IN DUSTY STARBURSTS AND ACTIVE GALACTIC NUCLEI , 2012, 1206.5435.

[120]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[121]  A. Lobanov,et al.  Over-resolution of compact sources in interferometric observations , 2012, 1203.2071.

[122]  P. Hall,et al.  X-RAY AND MULTIWAVELENGTH INSIGHTS INTO THE NATURE OF WEAK EMISSION-LINE QUASARS AT LOW REDSHIFT , 2011, 1112.2228.

[123]  H. Rix,et al.  THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS , 2011, 1109.6241.

[124]  D. Elbaz,et al.  The Herschel Multi-tiered Extragalactic Survey: SPIRE-mm photometric redshifts , 2011, 1109.2887.

[125]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[126]  Tucson,et al.  GOODS-Herschel: the far-infrared view of star formation in active galactic nucleus host galaxies since z ≈ 3 , 2011, 1106.4284.

[127]  R. Schneider,et al.  The origin of the dust in high-redshift quasars: the case of SDSS J1148+5251 , 2011, 1106.1418.

[128]  D. Calzetti,et al.  CALIBRATING EXTINCTION-FREE STAR FORMATION RATE DIAGNOSTICS WITH 33 GHz FREE–FREE EMISSION IN NGC 6946 , 2011, 1105.4877.

[129]  G. Richards,et al.  A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT , 2011, 1104.3861.

[130]  S. Veilleux,et al.  C-GOALS: Chandra observations of a complete sample of luminous infrared galaxies from the IRAS Revised Bright Galaxy Survey , 2011, 1103.2755.

[131]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[132]  Toru Yamada,et al.  MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog , 2010, 1012.2115.

[133]  B. Andrews,et al.  ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES , 2010, 1011.0955.

[134]  A. Cimatti,et al.  Far-infrared properties of submillimeter and optically faint radio galaxies , 2010, 1005.1154.

[135]  M. Salvato,et al.  The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS , 2009, 0912.4166.

[136]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[137]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[138]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[139]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[140]  R. Becker,et al.  THE FIRST–2MASS RED QUASAR SURVEY. II. AN ANOMALOUSLY HIGH FRACTION OF LoBALs IN SEARCHES FOR DUST-REDDENED QUASARS , 2008, 0808.3668.

[141]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[142]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[143]  Zeljko Ivezic,et al.  AGN Dusty Tori. I. Handling of Clumpy Media , 2008, 0806.0511.

[144]  A. M. Swinbank,et al.  WEIGHING THE BLACK HOLES IN z ≈ 2 SUBMILLIMETER-EMITTING GALAXIES HOSTING ACTIVE GALACTIC NUCLEI , 2008, The Astronomical Journal.

[145]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[146]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[147]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[148]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[149]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. II. Formation of Red Ellipticals , 2007, 0706.1246.

[150]  D. Schneider,et al.  The X-Ray Properties of the Most Luminous Quasars from the Sloan Digital Sky Survey , 2007, 0705.3059.

[151]  Riverside,et al.  Optical Spectroscopy and X-Ray Detections of a Sample of Quasars and Active Galactic Nuclei Selected in the Mid-Infrared from Two Spitzer Space Telescope Wide-Area Surveys , 2006, astro-ph/0609594.

[152]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[153]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[154]  C. Carilli,et al.  350 μm Dust Emission from High-Redshift Quasars , 2006, astro-ph/0603121.

[155]  J. Brinkmann,et al.  THE ASTROPHYSICAL JOURNAL,???:??–??, 2006???, ASTRO-PH/0602442 Preprint typeset using L ATEX style emulateapj v. 12/14/05 CHANDRA OBSERVATIONS OF THE HIGHEST REDSHIFT QUASARS FROM THE SLOAN DIGITAL SKY SURVEY , 2006 .

[156]  D. Helfand,et al.  A Near-Infrared Spectral Template for Quasars , 2005, astro-ph/0511640.

[157]  R. Becker,et al.  FIRST-2Mass Sources below the APM Detection Threshold: A Population of Highly Reddened Quasars , 2004, astro-ph/0402386.

[158]  G. Palumbo,et al.  The XMM-Newton and BeppoSAX view of the Ultra Luminous Infrared Galaxy MKN 231 , 2004, astro-ph/0402226.

[159]  R. Nichol,et al.  Red and Reddened Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0305305.

[160]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[161]  W. Brandt,et al.  X-Raying the Ultraluminous Infrared Starburst Galaxy and Broad Absorption Line QSO Markarian 231 with Chandra , 2001, astro-ph/0112257.

[162]  J. Dunlop,et al.  Quasars, their host galaxies and their central black holes , 2001, astro-ph/0108397.

[163]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[164]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[165]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[166]  Gopal-Krishna Unified Schemes for Radio Loud Active Galactic Nuclei , 1995 .

[167]  F. Macchetto,et al.  GALAXIES WITH EXTREME INFRARED AND FE II EMISSION. I: MARKARIAN 231 : THE SIGNATURE OF A YOUNG INFRARED QSO , 1994 .

[168]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[169]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[170]  J. Gunn,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0 , 2019 .

[171]  D. Elbaz,et al.  GOODS-ALMA: 1.1 mm galaxy survey-I. Source catalogue and optically dark galaxies , 2018 .

[172]  J. Dunlop,et al.  Deep multi-frequency radio imaging in the Lockman Hole â II. The spectral index of submillimetre galaxies: The radio spectral index of sub-mm galaxies , 2010 .

[173]  W. N. B. randt,et al.  CHANDRA OBSERVATIONS OF THE HIGHEST REDSHIFT QUASARS FROM THE SLOAN DIGITAL SKY SURVEY , 2006 .

[174]  L. Ho,et al.  A Deep Hubble Space Telescope H-Band Imaging Survey of Massive Gas-rich Mergers , 2006 .

[175]  W. Brandt,et al.  01 12 25 7 v 1 1 1 D ec 2 00 1 X-raying the Ultraluminous Infrared Starburst Galaxy and Broad Absorption Line QSO , Markarian 231 , with , 2001 .

[176]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .