Estimating solar irradiance using genetic programming technique and meteorological records

Solar irradiance is one of the most important parameters that need to be estimated and modeled before engaging in any solar energy project. This article describes a non-linear regression model based on genetic programming technique for estimating solar irradiance in a specific region in the United Arab Emirates. The genetic programming is an evolutionary computing technique that enables automatic search for complex solutions. The best nonlinear modeling function that can estimate the global solar radiation on horizontal will be developed taking into account measured meteorological data. A reference approach to model the solar radiation is first presented. An enhanced approach is then presented which consists of multi nonlinear functions of regression in a parallel structure where each function is designed to estimate the global solar irradiance in a specific seasonal period of the year. Statistical analysis measures have been used to evaluate the performance of the proposed approaches. The obtained results are comparable with the outcomes of models developed by other researchers in the field.

[1]  M. Mahmoud,et al.  Estimating Global Solar Energy Using Multilayer Perception Artificial Neural Network , 2012 .

[2]  Riccardo Poli,et al.  Genetic Programming An Introductory Tutorial and a Survey of Techniques and Applications , 2011 .

[3]  M. Tadros,et al.  Uses of sunshine duration to estimate the global solar radiation over eight meteorological stations in Egypt , 2000 .

[4]  Shahaboddin Shamshirband,et al.  Temperature-based estimation of global solar radiation using soft computing methodologies , 2015, Theoretical and Applied Climatology.

[5]  A. S. Sambo Empirical models for the correlation of global solar radiation with meteorological data for Northern Nigeria , 1986 .

[6]  Mohamed Mohandes,et al.  USE OF RADIAL BASIS FUNCTIONS FOR ESTIMATING MONTHLY MEAN DAILY SOLAR RADIATION , 2000 .

[7]  S. Rehman,et al.  Artificial neural network estimation of global solar radiation using air temperature and relative humidity , 2008 .

[8]  Tom Bylander,et al.  Predicting currency exchange rates by genetic programming with trigonometric functions and high-order statistics , 2006, GECCO '06.

[9]  Guillermo P Podesta,et al.  Estimating daily solar radiation in the Argentine Pampas , 2004 .

[10]  I. T. Toğrul,et al.  Global solar radiation over Turkey: comparison of predicted and measured data , 2002 .

[11]  A. Assi,et al.  Prediction of Monthly Average Daily Global Solar Radiation in Al Ain City – UAE Using Artificial Neural Networks , 2010 .

[12]  E. A. Ahmed,et al.  Estimate of Global Solar Radiation by Using Artificial Neural Network in Qena, Upper Egypt , 2013 .

[13]  H. Demirhan,et al.  New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique , 2015 .

[14]  Arif Hepbasli,et al.  Comparison of solar radiation correlations for İzmir, Turkey , 2002 .

[15]  A. Assi,et al.  Estimating Global Solar Radiation on Horizontal from Sunshine Hours in Abu Dhabi – UAE , 2010 .

[16]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[17]  Kasra Mohammadi,et al.  A support vector machine–firefly algorithm-based model for global solar radiation prediction , 2015 .

[18]  Ahmet Duran Şahin A new formulation for solar irradiation and sunshine duration estimation , 2007 .

[19]  Saudi Arabia,et al.  Development of Neural Network Model to Estimate Hourly Total and Diffuse Solar Radiation on Horizontal Surface at Alexandria City (Egypt) , 2015 .

[20]  Joseph A. Jervase,et al.  Monthly average daily solar radiation and clearness index contour maps over Oman , 2003 .

[21]  K. Bakirci Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey , 2009 .

[22]  D. K. Butt Solar and Terrestrial Radiation , 1978 .

[23]  J. Almorox,et al.  ESTIMATIO N OF GLOBAL SOLAR RADIATION IN VENEZUELA , 2008 .

[24]  Mónica Bocco,et al.  Comparison of Regression and Neural Networks Models to Estimate Solar Radiation , 2010 .

[25]  Ernesto Costa,et al.  Dynamic Limits for Bloat Control: Variations on Size and Depth , 2004, GECCO.

[26]  F. Anctil,et al.  Comparison of empirical daily surface incoming solar radiation models , 2008 .

[27]  A. Angstroem Solar and terrestrial radiation , 1924 .

[28]  Haydar Demirhan,et al.  A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation , 2017 .

[29]  Zhou Jin,et al.  General formula for estimation of monthly average daily global solar radiation in China , 2005 .

[30]  Ozgur Kisi,et al.  Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach , 2014 .

[31]  Simon M. Lucas,et al.  On the genetic programming of time-series predictors for supply chain management , 2008, GECCO '08.

[32]  C. Ertekin,et al.  Evaluation of global solar radiation models for Konya, Turkey , 2006 .

[33]  Shafiqur Rehman,et al.  Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia , 2002 .

[34]  Sara Silva,et al.  GPLAB A Genetic Programming Toolbox for MATLAB , 2004 .

[35]  Ernesto Costa,et al.  Resource-limited genetic programming: the dynamic approach , 2005, GECCO '05.

[36]  Saptarshi Das,et al.  Global solar irradiation prediction using a multi-gene genetic programming approach , 2013, ArXiv.

[37]  T. Krishnaiah,et al.  Neural Network Approach for Modelling Global Solar Radiation , 2007 .

[38]  Francisco Javier Martinez-de-Pison,et al.  Evaluation and improvement of empirical models of global solar irradiation: Case study northern Spain , 2013 .

[39]  Martha C. Anderson,et al.  A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery ☆ , 2004 .

[40]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[41]  Shahaboddin Shamshirband,et al.  Potential of radial basis function based support vector regression for global solar radiation prediction , 2014 .

[42]  A. Kamsin,et al.  Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure , 2016 .

[43]  Hamdy K. Elminir,et al.  Estimation of solar radiation components incident on Helwan site using neural networks , 2005 .

[44]  Jason H. Moore,et al.  Genetic Programming Theory and Practice IX , 2011 .

[45]  Jonas S. Almeida,et al.  Dynamic maximum tree depth: a simple technique for avoiding bloat in tree-based GP , 2003 .

[46]  Mohamed Mohandes,et al.  Estimation of global solar radiation using artificial neural networks , 1998 .