As-equilateral-as-possible surface remeshing

0123456789 Abstract Surface remeshing aims to produce a high-quality mesh from a given input mesh. In this paper, we present a practical approach to isotropic surface remeshing of triangular meshes in an as-equilateral-as-possible (AEAP) manner. The proposed approach iterates in a two-step manner. In the first step, we optimize the mesh connectivity to reduce the number of irregular vertices. And in the second step, we improve the elements’ shape by locally fitting an equilateral triangle separately and globally stitching them to a new mesh with feature constraints. The proposed approach can be effectively used in preprocessing for finite element computations. Experiments are presented to show that our approach is simple and robust, and the remeshed results generate more well-shaped triangles and preserve the features of the original surface, which are favored in many applications.

[1]  Leif Kobbelt,et al.  OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .

[2]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[3]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[4]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[5]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[6]  Wenping Wang,et al.  Isotropic Surface Remeshing Using Constrained Centroidal Delaunay Mesh , 2012, Comput. Graph. Forum.

[7]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[8]  J. P. Peçanha,et al.  Iterative Method for Edge Length Equalization , 2013, ICCS.

[9]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[10]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[11]  Tamal K. Dey,et al.  Polygonal surface remeshing with Delaunay refinement , 2010, Engineering with Computers.

[12]  Manolis Papadrakakis,et al.  Improving mesh quality and finite element solution accuracy by GETMe smoothing in solving the Poisson equation , 2013 .

[13]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[14]  Joshua A. Levine,et al.  Localized Delaunay Refinement for Sampling and Meshing , 2010, Comput. Graph. Forum.

[15]  Simon Fuhrmann,et al.  Direct Resampling for Isotropic Surface Remeshing , 2010, VMV.

[16]  Basile Sauvage,et al.  Semi‐Regular Triangle Remeshing: A Comprehensive Study , 2015, Comput. Graph. Forum.

[17]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[18]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[19]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[20]  Houman BOROUCHAKIyUTT,et al.  Surface Mesh Evaluation , 1997 .

[21]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[22]  J. Remacle,et al.  Blossom‐Quad: A non‐uniform quadrilateral mesh generator using a minimum‐cost perfect‐matching algorithm , 2012 .

[23]  Adam C. Woodbury,et al.  Adaptive mesh coarsening for quadrilateral and hexahedral meshes , 2010 .