Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators

Abstract The traditional Micro-perforated plate (MPP) is a kind of clean and non-polluting absorption structure in the middle and high frequency and has been widely used in the field of noise control. However, the sound absorption performance is dissatisfied at low frequencies when the air-cavity depth is restricted. In this paper, a mechanical impedance plate (MIP) is introduced into the traditional MPP structure and a Helmholtz resonator is attached to the MIP. Mechanical impedance plate (MIP) provides a good absorption at low frequency by using mechanism of mechanical resonance and the acoustic energy is dissipated in the form of heat with viscoelastic material. Helmholtz resonator can fill in the defect of the poor absorption effect between the Micro-perforated plate (MPP) and the mechanical impedance plate (MIP). The acoustic impedance of the proposed sound absorber is investigated by using acoustic electric analogy method and impedance transfer method. The influence of the tube’s length of Helmholtz resonator and the number of Helmholtz resonator on the sound absorption is studied. The corresponding results are in agreement with the theoretical calculation and prove that the composite structure has the characteristics of improving the low frequency sound absorption property.