On cyclic codes over Galois rings
暂无分享,去创建一个
[1] Steven T. Dougherty,et al. On modular cyclic codes , 2007, Finite Fields Their Appl..
[2] EIMEAR BYRNE,et al. Gröbner Bases over Galois Rings with an Application to Decoding Alternant Codes , 2001, J. Symb. Comput..
[3] G. Norton,et al. Strong Gröbner bases for polynomials over a principal ideal ring , 2001 .
[4] G. Norton,et al. Cyclic codes and minimal strong Gröbner bases over a principal ideal ring , 2003 .
[5] Sergio R. López-Permouth,et al. Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes , 2012, Finite Fields Their Appl..
[6] Zhe-Xian Wan. Finite Fields and Galois Rings , 2011 .
[7] Han Mao Kiah,et al. Cyclic codes over GR(p2, m) of length pk , 2008, Finite Fields Their Appl..
[9] Sergio R. López-Permouth,et al. Cyclic Codes over the Integers Modulopm , 1997 .
[10] Ana Salagean,et al. Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..
[11] N. J. A. Sloane,et al. Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..
[12] Sergio R. López-Permouth,et al. Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.
[13] Steven T. Dougherty,et al. Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..
[14] Mohammad Umar Siddiqi,et al. Transform domain characterization of cyclic codes overZm , 1994, Applicable Algebra in Engineering, Communication and Computing.
[15] Morteza Esmaeili,et al. Cyclic and negacyclic codes over the Galois ring GR(p2, m) , 2009, Discret. Appl. Math..
[16] Taher Abualrub,et al. Cyclic Codes of Length 2e Over Z4 , 2003, Discret. Appl. Math..
[17] Thomas Blackford,et al. Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.
[18] B. R. McDonald. Finite Rings With Identity , 1974 .