On cyclic codes over Galois rings

Abstract Let R be a Galois ring of characteristic p a , where p is a prime and a is a natural number. In this paper, the generators of cyclic codes of arbitrary length n over R in terms of minimal degree polynomials of certain subsets of codes have been obtained. Moreover, the explicit set of generators so obtained turns out to be a minimal strong Grobner basis. Some results on torsion codes of a cyclic code over R have also been obtained. Using these results, the size of a cyclic code over R has been expressed in terms of the degrees of its generators.

[1]  Steven T. Dougherty,et al.  On modular cyclic codes , 2007, Finite Fields Their Appl..

[2]  EIMEAR BYRNE,et al.  Gröbner Bases over Galois Rings with an Application to Decoding Alternant Codes , 2001, J. Symb. Comput..

[3]  G. Norton,et al.  Strong Gröbner bases for polynomials over a principal ideal ring , 2001 .

[4]  G. Norton,et al.  Cyclic codes and minimal strong Gröbner bases over a principal ideal ring , 2003 .

[5]  Sergio R. López-Permouth,et al.  Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes , 2012, Finite Fields Their Appl..

[6]  Zhe-Xian Wan Finite Fields and Galois Rings , 2011 .

[7]  Han Mao Kiah,et al.  Cyclic codes over GR(p2, m) of length pk , 2008, Finite Fields Their Appl..

[9]  Sergio R. López-Permouth,et al.  Cyclic Codes over the Integers Modulopm , 1997 .

[10]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..

[11]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[12]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[13]  Steven T. Dougherty,et al.  Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..

[14]  Mohammad Umar Siddiqi,et al.  Transform domain characterization of cyclic codes overZm , 1994, Applicable Algebra in Engineering, Communication and Computing.

[15]  Morteza Esmaeili,et al.  Cyclic and negacyclic codes over the Galois ring GR(p2, m) , 2009, Discret. Appl. Math..

[16]  Taher Abualrub,et al.  Cyclic Codes of Length 2e Over Z4 , 2003, Discret. Appl. Math..

[17]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[18]  B. R. McDonald Finite Rings With Identity , 1974 .