Robust Morse Decompositions of Piecewise Constant Vector Fields

In this paper, we introduce a new approach to computing a Morse decomposition of a vector field on a triangulated manifold surface. The basic idea is to convert the input vector field to a piecewise constant (PC) vector field, whose trajectories can be computed using simple geometric rules. To overcome the intrinsic difficulty in PC vector fields (in particular, discontinuity along mesh edges), we borrow results from the theory of differential inclusions. The input vector field and its PC variant have similar Morse decompositions. We introduce a robust and efficient algorithm to compute Morse decompositions of a PC vector field. Our approach provides subtriangle precision for Morse sets. In addition, we describe a Morse set classification framework which we use to color code the Morse sets in order to enhance the visualization. We demonstrate the benefits of our approach with three well-known simulation data sets, for which our method has produced Morse decompositions that are similar to or finer than those obtained using existing techniques, and is over an order of magnitude faster.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[3]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[4]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[5]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[6]  I︠u︡. A. Shashkin The Euler characteristic , 1989 .

[7]  M. Mrozek Index pairs and the fixed point index for semidynamical systems with discrete time , 1989 .

[8]  M. Mrozek A cohomological index of Conley type for multi-valued admissible flows , 1990 .

[9]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[10]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[11]  M. Mrozek,et al.  Conley index for discrete multi-valued dynamical systems , 1995 .

[12]  R. MacKay INTRODUCTION TO THE MODERN THEORY OF DYNAMICAL SYSTEMS (Encyclopaedia of Mathematics and its Applications 54) , 1997 .

[13]  R. Forman Combinatorial vector fields and dynamical systems , 1998 .

[14]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[15]  L. Górniewicz Topological Fixed Point Theory of Multivalued Mappings , 1999 .

[16]  Hans Hagen,et al.  Higher Order Singularities in Piecewise Linear Vector Fields , 2000, IMA Conference on the Mathematics of Surfaces.

[17]  H. Hagen,et al.  A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[18]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[19]  Valerio Pascucci,et al.  Visualization of large terrains made easy , 2001, Proceedings Visualization, 2001. VIS '01..

[20]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[21]  K. Mischaikow,et al.  Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values , 1995, math/9501230.

[22]  M. Schatzman,et al.  Numerical Analysis: A Mathematical Introduction , 2002 .

[23]  B. Hamann,et al.  A multi-resolution data structure for two-dimensional Morse-Smale functions , 2003, IEEE Visualization, 2003. VIS 2003..

[24]  Yu Zhao,et al.  A texture method for visualization of electromagnetic vector field , 2003, Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003..

[25]  Bernd Hamann,et al.  A Multi-Resolution Data Structure for 2-Dimensional Morse Functions , 2003, IEEE Visualization.

[26]  Hans-Peter Seidel,et al.  Grid-independent Detection of Closed Stream Lines in 2D Vector Fields , 2004, VMV.

[27]  D. Weiskopf,et al.  Investigating swirl and tumble flow with a comparison of visualization techniques , 2004, IEEE Visualization 2004.

[28]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[29]  Robert S. Laramee,et al.  ISA and IBFVS: image space-based visualization of flow on surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[30]  Hans Hagen,et al.  Visual analysis and exploration of fluid flow in a cooling jacket , 2005, VIS 05. IEEE Visualization, 2005..

[31]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[32]  Xavier Tricoche,et al.  Fast and Robust Extraction of Separation Line Features , 2006 .

[33]  L. Nicolaescu THE EULER CHARACTERISTIC , 2006 .

[34]  R. McGehee,et al.  Conley decomposition for closed relations , 2006 .

[35]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[36]  K. Mischaikow,et al.  Polygonal approximation of flows , 2007 .

[37]  Konstantin Mischaikow,et al.  Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.

[38]  Konstantin Mischaikow,et al.  Efficient Morse Decompositions of Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[39]  Min Chen,et al.  Over Two Decades of Integration-Based, Geometric Flow Visualization , 2009, Eurographics.

[40]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[41]  Min Chen,et al.  Over Two Decades of Integration‐Based, Geometric Flow Visualization , 2010, Comput. Graph. Forum.

[42]  Mubarak Shah,et al.  A Streakline Representation of Flow in Crowded Scenes , 2010, ECCV.

[43]  Ingrid Hotz,et al.  Fast Combinatorial Vector Field Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[44]  Andrzej Szymczak Stable Morse Decompositions for Piecewise Constant Vector Fields on Surfaces , 2011, Comput. Graph. Forum.

[45]  Robert S. Laramee,et al.  Morse Set Classification and Hierarchical Refinement Using Conley Index , 2012, IEEE Transactions on Visualization and Computer Graphics.

[46]  R. Ho Algebraic Topology , 2022 .