Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV

Previous work examined degree of hybridization on the fuel economy of a hybrid electric sport utility vehicle. It was observed that not only was the vehicle control strategy important, but that its definition should be coupled with the component sizing process. Both degree of hybridization and the energy management strategy have been optimized simultaneously in this study. Simple mass scaling algorithms were employed to capture the effect of component and vehicle mass variations as a function of degree of hybridization. Additionally, the benefits of regenerative braking and power buffering have been maximized using optimization methods to determine appropriate battery pack sizing. Both local and global optimization routines were applied to improve the confidence in the solution being close to the true optimum. An optimal configuration and energy management strategy that maximizes the benefit of hybridization for a hydrogen fuel cell hybrid SUV was derived. The optimal configuration was explored, and sensitivity to drive cycle in the optimization process was studied.