Long-Range Hybrid Plasmonic Slot Waveguide

We propose and design a silicon-based long-range hybrid plasmonic slot (LRHPS) waveguide. The waveguide structure consists of a thin metal film (silver) inserted into a vertical low-index slot [filled with silicon nanocrystal (Si-nc)] between two high-index dielectrics (silicon), forming two nanoscale low-index Si-nc slot regions. The modes are confined within the two vertical regions. The designed LRHPS waveguide takes advantages of both traditional long-range surface plasmon polariton waveguide and hybrid plasmonic waveguide. The combined effects of long-range surface plasmon polaritons and discontinuity of electric field at the interface between two dielectrics with high-contrast refractive index enable a millimeter-scale propagation range together with a subwavelength mode confinement for potential high-density nanophotonic integration. The resultant quasi-TE mode properties of LRHPS waveguide, including long-range hybrid (LRH) mode and short-range hybrid (SRH) mode, are analyzed, showing a long propagation length up to 14.55 mm (corresponding to a low loss of <formula formulatype="inline"><tex Notation="TeX">$3\times 10^{-4}\ \hbox{dB}/\mu\hbox{m}$</tex></formula>) with a slot size of 150 nm <formula formulatype="inline"><tex Notation="TeX">$\times$</tex></formula> 200 nm. Normalized power and intensity are also calculated, indicating tight mode confinement within subwavelength low-index slot regions. Moreover, nonlinearity and chromatic dispersion are also studied. Due to the design freedom of double-slot structure, a high nonlinearity of <formula formulatype="inline"><tex Notation="TeX">$7.82 \times 10^{6}\ \hbox{W}^{-1}\hbox{km}^{-1}$</tex></formula> and a low chromatic dispersion of <formula formulatype="inline"><tex Notation="TeX">$-$</tex></formula>28.29 ps/nm/km at 1550 nm are achieved, implying possible applications in efficient nonlinear optical signal processing.

[1]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[2]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[3]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[4]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[5]  Sailing He,et al.  Low-loss hybrid plasmonic waveguide with double low-index nano-slots. , 2010, Optics express.

[6]  Ming Zhu,et al.  Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. , 2012, Optics express.

[7]  Masanori Koshiba,et al.  Polarization-independent optical directional coupler based on slot waveguides. , 2006, Optics letters.

[8]  Yang Yue,et al.  Flattened dispersion in silicon slot waveguides. , 2010, Optics express.

[9]  Yang Yue,et al.  Silicon-on-insulator polarization splitter using two horizontally slotted waveguides. , 2010, Optics letters.

[10]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[11]  Pierre Berini,et al.  Figures of merit for surface plasmon waveguides. , 2006, Optics express.

[12]  E. Kriezis,et al.  Nonlinear effects in hybrid plasmonic waveguides , 2012, 2012 14th International Conference on Transparent Optical Networks (ICTON).

[13]  P. Berini Long-range surface plasmon polaritons , 2009 .

[14]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[15]  Er-Ping Li,et al.  Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components , 2010 .

[16]  D. Van Thourhout,et al.  Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography , 2004, IEEE Photonics Technology Letters.

[17]  Wei-Ping Huang,et al.  Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. , 2012, Optics express.

[18]  Polarization and Transmission Properties of Metamaterial-Based Three-Dimensional Plasmonic Structure , 2011, IEEE Photonics Journal.

[19]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[20]  Lorenzo Pavesi,et al.  Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. , 2010, Nano letters.

[21]  Yang Yue,et al.  Highly efficient nonlinearity reduction in silicon-on-insulator waveguides using vertical slots. , 2010, Optics express.

[22]  Y. Vlasov,et al.  Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. , 2003, Optics express.

[23]  Malin Premaratne,et al.  Exact dispersion relation for nonlinear plasmonic waveguides , 2011 .

[24]  J. V. Galan,et al.  Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[25]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  Amadeu Griol,et al.  Slot-waveguide biochemical sensor. , 2007, Optics letters.

[27]  Sailing He,et al.  A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. , 2009, Optics express.

[28]  L Martin-Moreno,et al.  Channel plasmon-polaritons: modal shape, dispersion, and losses. , 2006, Optics letters.

[29]  Sailing He,et al.  Novel surface plasmon waveguide for high integration. , 2005, Optics express.

[30]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[31]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.