Global spectral graph wavelet signature for surface analysis of carpal bones

Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

[1]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[2]  Andrea Giachetti,et al.  Retrieval and Classification on Textured 3D Models , 2014, 3DOR@Eurographics.

[3]  Joseph J Crisco,et al.  A digital database of wrist bone anatomy and carpal kinematics. , 2007, Journal of biomechanics.

[4]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[5]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .

[6]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  A. Ben Hamza,et al.  Geometric Methods in Signal and Image Analysis: References , 2015 .

[8]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[9]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[10]  Ljubisa Stankovic,et al.  Vertex-Frequency Energy Distributions , 2018, IEEE Signal Processing Letters.

[11]  Rongrong Ji,et al.  Learning High-Level Feature by Deep Belief Networks for 3-D Model Retrieval and Recognition , 2014, IEEE Transactions on Multimedia.

[12]  A. Ben Hamza,et al.  Secret sharing approaches for 3D object encryption , 2011, Expert Syst. Appl..

[13]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[14]  Yingqian Wang,et al.  A new computational framework for anatomically consistent 3D statistical shape analysis with clinical imaging applications , 2013, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[15]  Jatmiko,et al.  The Primitive Wrist of Homo floresiensis and Its Implications for Hominin Evolution , 2007, Science.

[16]  Zeyun Yu,et al.  A compact shape descriptor for triangular surface meshes , 2014, Comput. Aided Des..

[17]  Duc Anh Duong,et al.  Deformable Shape Retrieval with Missing Parts , 2017, 3DOR@Eurographics.

[18]  A. Ben Hamza,et al.  A multiresolution descriptor for deformable 3D shape retrieval , 2013, The Visual Computer.

[19]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[20]  Pierre Vandergheynst,et al.  Vertex-Frequency Analysis on Graphs , 2013, ArXiv.

[21]  A. Ben Hamza,et al.  Spectral shape classification: A deep learning approach , 2017, J. Vis. Commun. Image Represent..

[22]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[23]  D. Moore,et al.  Carpal bone size and scaling in men versus in women. , 2005, The Journal of hand surgery.

[24]  Jing Xu,et al.  A Feasibility Study on Kinematic Feature Extraction from the Human Interventricular Septum toward Hypertension Classification , 2014, CompIMAGE.

[25]  Paul Suetens,et al.  A comparison of methods for non-rigid 3D shape retrieval , 2013, Pattern Recognit..

[26]  Nicola Dalbeth,et al.  Measuring bone erosion and edema in rheumatoid arthritis: A comparison of manual segmentation and RAMRIS methods , 2011, Journal of magnetic resonance imaging : JMRI.

[27]  A. Ben Hamza,et al.  A spectral graph wavelet approach for nonrigid 3D shape retrieval , 2016, Pattern Recognit. Lett..

[28]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[29]  A. Ben Hamza,et al.  Information-theoretic hashing of 3D objects using spectral graph theory , 2009, Expert Syst. Appl..

[30]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[31]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[32]  Anand A Joshi,et al.  Global point signature for shape analysis of carpal bones , 2014, Physics in medicine and biology.

[33]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[34]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[35]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..