Robot vision with cellular neural networks: a practical implementation of new algorithms

Cellular neural networks (CNNs) are well suited for image processing due to the possibility of a parallel computation. In this paper, we present two algorithms for tracking and obstacle avoidance using CNNs. Furthermore, we show the implementation of an autonomous robot guided using only real-time visual feedback; the image processing is performed entirely by a CNN system embedded in a digital signal processor (DSP). We successfully tested the two algorithms on this robot. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Dean A. Pomerleau,et al.  RALPH: rapidly adapting lateral position handler , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[2]  Hubert Harrer Discrete time cellular neural networks , 1992, Int. J. Circuit Theory Appl..

[3]  Ángel Rodríguez-Vázquez,et al.  ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Massimo Bertozzi,et al.  GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection , 1998, IEEE Trans. Image Process..

[5]  Tamás Roska,et al.  The CNN universal machine: an analogic array computer , 1993 .

[6]  Ángel Rodríguez-Vázquez,et al.  ACE4k: An analog I/O 64×64 visual microprocessor chip with 7-bit analog accuracy , 2002, Int. J. Circuit Theory Appl..

[7]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[8]  Stuart Harvey Rubin,et al.  Estimating motion flow field in image sequences using Cellular Neural Networks , 2000, PDPTA.

[9]  X. Vilasis-Cardona,et al.  Real time vision by FPGA implemented CNNs , 2005, Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005..

[10]  Marco Balsi,et al.  Guiding a mobile robot with cellular neural networks , 2002, Int. J. Circuit Theory Appl..

[11]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[12]  Yong Ching Lim,et al.  A low-voltage CMOS OTA with rail-to-rail differential input range , 2000 .

[13]  M. Balsi Focal-plane optical flow computation by foveated CNNs , 1998, 1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359).

[14]  Ákos Zarándy The art of CNN template design , 1999 .

[15]  Péter Szolgay,et al.  Configurable multilayer CNN-UM emulator on FPGA , 2003 .