Performance evaluation of a floating lidar buoy in nearshore conditions

This work provides a signal-processing and statistical-error analysis methodology to assess key performance indicators for a floating Doppler wind lidar. The study introduces the raw-to-clean data processing chain, error assessment indicators and key performance indicators, as well as two filtering methods at post-processing level to alleviate the impact of angular motion and spatial variability of the wind flow on the performance indicators. Towards this aim, the study mainly revisits horizontal wind speed (HWS) and turbulence intensity measurements with a floating ZephIR 300 lidar buoy during a 38 day nearshore test campaign in Pont del Petroli (Barcelona). Typical day cases along with overall statistics for the whole campaign are discussed to illustrate the methodology and processing tools developed. Copyright © 2017 John Wiley & Sons, Ltd.

[1]  R. Barthelmie,et al.  Empirical downscaling of wind speed probability distributions , 2005 .

[2]  J. Lundquist,et al.  Assessing atmospheric stability and its impacts on rotor‐disk wind characteristics at an onshore wind farm , 2010 .

[3]  I. Pineda,et al.  The European offshore wind industry: key trends and statistics 2016 , 2017 .

[4]  Gerrit Wolken-Möhlmann,et al.  Simulation of motion induced measurement errors for wind measurements using LIDAR on floating platforms , 2010 .

[5]  Rachel Nicholls-Lee A Low Motion Floating Platform for Offshore Wind Resource Assessment Using Lidars , 2013 .

[6]  David Schlipf,et al.  Model based wind vector field reconstruction from lidar data , 2012 .

[7]  S. Grossmann The Spectrum of Turbulence , 2003 .

[8]  Robert M. Banta,et al.  Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications , 2012 .

[9]  John G. Proakis,et al.  Digital Signal Processing 4th Edition , 2006 .

[10]  S. Gryning,et al.  Offshore wind profiling using light detection and ranging measurements , 2009 .

[11]  Francisco Rocadenbosch Burillo,et al.  Performance evaluation of a floating lidar buoy in nearshore conditions , 2017 .

[12]  Thomas Neumann,et al.  Comparison of turbulence spectra derived from LiDAR and sonic measurements at the offshore platform FINO1 , 2010 .

[13]  Sophie Papst,et al.  Statistics A Guide To The Use Of Statistical Methods In The Physical Sciences , 2016 .

[14]  G. A. Cool Floating LiDAR Technology: Oceanographic parameters influencing accuracy of wind vector reconstruction , 2016 .

[15]  Julia Gottschall,et al.  Can wind lidars measure turbulence , 2011 .

[16]  Torben Mikkelsen,et al.  Spectral analysis of wind turbulence measured by a Doppler Lidar for velocity fine structure and coherence studies , 2010 .

[17]  Radian Belu,et al.  Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain , 2013 .

[18]  Rebecca J. Barthelmie,et al.  Estimating Wind Energy Potential Offshore in Mediterranean Areas , 2003 .

[19]  G. Wolken-Möhlmann,et al.  Results and conclusions of a floating-lidar offshore test , 2014 .

[20]  Charlotte Bay Hasager,et al.  Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China , 2014 .

[21]  Francesc Rocadenbosch,et al.  Motion compensation study for a floating Doppler wind LiDAR , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[22]  Francesc Rocadenbosch,et al.  Performance evaluation of a floating Doppler wind lidar buoy in mediterranean near-shore conditions , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[23]  Torben Mikkelsen,et al.  Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR , 2009 .

[24]  R. Barthelmie,et al.  Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions , 2003 .

[25]  Ioannis Antoniou,et al.  Lidar profilers in the context of wind energy–a verification procedure for traceable measurements , 2012 .

[26]  John L. Schroeder,et al.  Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars , 2012 .

[27]  Charlotte Bay Hasager,et al.  Remote sensing technologies for measuring offshore wind , 2016 .

[28]  Charlotte Bay Hasager,et al.  Offshore wind resource estimation from satellite SAR wind field maps , 2005 .

[29]  Frieder Schuon,et al.  KIC InnoEnergy Project Neptune: development of a floating LiDAR buoy for wind, wave and current measurements , 2012 .

[30]  Joaquim Sospedra Iglesias,et al.  Novel multipurpose buoy for offshore wind profile measurements EOLOS platform faces validation at ijmuiden offshore metmast , 2015 .

[31]  G. Arfken Mathematical Methods for Physicists , 1967 .