On Decidability of Concurrent Kleene Algebra

Concurrent Kleene algebras support equational reasoning about computing systems with concurrent behaviours. Their natural semantics is given by series(parallel) rational pomset languages, a standard true concurrency semantics, which is often associated with processes of Petri nets. We use constructions on Petri nets to provide two decision procedures for such pomset languages motivated by the equational and the refinement theory of concurrent Kleene algebra. The contribution to the first problem lies in a much simpler algorithm and an ExpSpace complexity bound. Decidability of the second, more interesting problem is new and, in fact, ExpSpace-complete.

[1]  J. Grabowski,et al.  On partial languages , 1981, Fundam. Informaticae.

[2]  Maurice Boffa,et al.  Une remarque sur les systèmes complets d'identités rationnelles , 1990, RAIRO Theor. Informatics Appl..

[3]  Christoph Haase,et al.  Tightening the Complexity of Equivalence Problems for Commutative Grammars , 2015, STACS.

[4]  M. Boffa,et al.  Une condition impliquant toutes les identités rationnelles , 1995, RAIRO Theor. Informatics Appl..

[5]  Albert R. Meyer,et al.  Deciding True Concurrency Equivalences on Safe, Finite Nets , 1996, Theor. Comput. Sci..

[6]  Georg Struth,et al.  Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Rational Pomset Languages , 2014, RAMiCS.

[7]  Georg Struth,et al.  Hybrid process algebra , 2005, J. Log. Algebraic Methods Program..

[8]  Georg Struth,et al.  24 : 2 On Decidability of Concurrent Kleene Algebra , 2019 .

[9]  J. Conway Regular algebra and finite machines , 1971 .

[10]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[11]  Bell Telephone,et al.  Regular Expression Search Algorithm , 1968 .

[12]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[13]  Eugene L. Lawler,et al.  The recognition of Series Parallel digraphs , 1979, SIAM J. Comput..

[14]  K. Rangarajan,et al.  Hierarchical Structure of 1-Safe Petri Nets , 2003, ASIAN.

[15]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[16]  Daniel Krob,et al.  A Complete System of B-Rational Identities , 1990, ICALP.

[17]  Alain J. Mayer,et al.  The Complexity of Word Problems - This Time with Interleaving , 1994, Inf. Comput..

[18]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[19]  Daniel Kroening,et al.  On Partial Order Semantics for SAT/SMT-Based Symbolic Encodings of Weak Memory Concurrency , 2015, FORTE.