Spatiotemporal Content of Saccade Transients

[1]  Martin Rolfs,et al.  Intra-saccadic motion streaks as cues to linking object locations across saccades , 2020, Journal of vision.

[2]  Michele Rucci,et al.  Finely tuned eye movements enhance visual acuity , 2020, Nature Communications.

[3]  N. Casals,et al.  Sensing of nutrients by CPT1C regulates late endosome/lysosome anterograde transport and axon growth , 2019, eLife.

[4]  Saskia Haegens,et al.  Dynamic Modulation of Cortical Excitability during Visual Active Sensing , 2019, Cell reports.

[5]  M. Morrone,et al.  Vision During Saccadic Eye Movements. , 2018, Annual review of vision science.

[6]  Michele Rucci,et al.  Contrast sensitivity reveals an oculomotor strategy for temporally encoding space , 2018, bioRxiv.

[7]  O. Hikosaka,et al.  What do eye movements tell us about patients with neurological disorders? — An introduction to saccade recording in the clinical setting — , 2017, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[8]  Markus Lappe,et al.  Heading representations in primates are compressed by saccades , 2017, Nature Communications.

[9]  M. Lappe,et al.  Saccadic suppression during voluntary versus reactive saccades. , 2017, Journal of vision.

[10]  Marco Boi,et al.  Consequences of the Oculomotor Cycle for the Dynamics of Perception , 2017, Current Biology.

[11]  Toshiaki Setoguchi,et al.  Experimental study on gas-particle two-phase flows in a micro shock tube , 2017, J. Vis..

[12]  Michael E Goldberg,et al.  Corollary Discharge and Oculomotor Proprioception: Cortical Mechanisms for Spatially Accurate Vision. , 2016, Annual review of vision science.

[13]  D. Snodderly,et al.  A physiological perspective on fixational eye movements , 2016, Vision Research.

[14]  J. Victor,et al.  The unsteady eye: an information-processing stage, not a bug , 2015, Trends in Neurosciences.

[15]  T. Moore,et al.  Saccades and shifting receptive fields: anticipating consequences or selecting targets? , 2014, Trends in Cognitive Sciences.

[16]  Michele Rucci,et al.  The Visual Input to the Retina during Natural Head-Free Fixation , 2014, The Journal of Neuroscience.

[17]  David C. Burr,et al.  Optimal Multimodal Integration in Spatial Localization , 2013, The Journal of Neuroscience.

[18]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[19]  Michael A Paradiso,et al.  Macaque V1 representations in natural and reduced visual contexts: spatial and temporal properties and influence of saccadic eye movements. , 2012, Journal of neurophysiology.

[20]  M. Rucci,et al.  Precision of sustained fixation in trained and untrained observers. , 2012, Journal of vision.

[21]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[22]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[23]  Jan Churan,et al.  Perceptual compression of visual space during eye-head gaze shifts. , 2011, Journal of vision.

[24]  M. Ibbotson,et al.  Visual perception and saccadic eye movements , 2011, Current Opinion in Neurobiology.

[25]  Peter Neri,et al.  Coarse to fine dynamics of monocular and binocular processing in human pattern vision , 2011, Proceedings of the National Academy of Sciences.

[26]  Robert H. Wurtz,et al.  Thalamic pathways for active vision , 2011, Trends in Cognitive Sciences.

[27]  Thérèse Collins,et al.  Extraretinal signal metrics in multiple-saccade sequences. , 2010, Journal of vision.

[28]  M. Rucci,et al.  Microsaccades Precisely Relocate Gaze in a High Visual Acuity Task , 2010, Nature Neuroscience.

[29]  K. Hoffmann,et al.  Neural Dynamics of Saccadic Suppression , 2009, Journal of Neuroscience.

[30]  Bart Krekelberg,et al.  The Relationship between Saccadic Suppression and Perceptual Stability , 2009, Current Biology.

[31]  Masahiro Takei,et al.  Human resource development and visualization , 2009, J. Vis..

[32]  D. Snodderly,et al.  Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences. , 2008, Journal of vision.

[33]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[34]  A. Hyvärinen,et al.  Spatial frequency tuning in human retinotopic visual areas. , 2008, Journal of vision.

[35]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[36]  J. Hegdé Time course of visual perception: Coarse-to-fine processing and beyond , 2008, Progress in Neurobiology.

[37]  M. Bar,et al.  Magnocellular Projections as the Trigger of Top-Down Facilitation in Recognition , 2007, The Journal of Neuroscience.

[38]  M. Rucci,et al.  A model of the dynamics of retinal activity during natural visual fixation , 2007, Visual Neuroscience.

[39]  M. Ibbotson,et al.  Enhanced motion sensitivity follows saccadic suppression in the superior temporal sulcus of the macaque cortex. , 2006, Cerebral cortex.

[40]  Yuli D. Chashechkin,et al.  Transportation of a dye in upstream and downstream wakes of the cylinder in continuously stratified liquid , 2007, J. Vis..

[41]  Dario L Ringach,et al.  Dynamics of receptive field size in primary visual cortex. , 2007, Journal of neurophysiology.

[42]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[43]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[44]  Steven F. Kalik,et al.  Analysis of perisaccadic field potentials in the occipitotemporal pathway during active vision. , 2003, Journal of neurophysiology.

[45]  J. Douglas Crawford,et al.  Optimal transsaccadic integration explains distorted spatial perception , 2003, Nature.

[46]  Vivien A Casagrande,et al.  Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus) , 2002, The Journal of comparative neurology.

[47]  Eric Castet,et al.  Motion perception of saccade-induced retinal translation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Snodderly,et al.  Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. , 2002, Journal of neurophysiology.

[49]  R. Reid,et al.  Saccadic Eye Movements Modulate Visual Responses in the Lateral Geniculate Nucleus , 2002, Neuron.

[50]  B. Rovner,et al.  Activity loss and depression in age-related macular degeneration. , 2002, The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry.

[51]  Gary C. Brown,et al.  Quality of life with visual acuity loss from diabetic retinopathy and age-related macular degeneration. , 2002, Archives of ophthalmology.

[52]  D. Ringach,et al.  Dynamics of Spatial Frequency Tuning in Macaque V1 , 2002, The Journal of Neuroscience.

[53]  P. H. Schiller,et al.  Spatial frequency and orientation tuning dynamics in area V1 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[55]  M. Morrone,et al.  Extraretinal Control of Saccadic Suppression , 2000, The Journal of Neuroscience.

[56]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[57]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, I: Linear dynamics , 1997, Visual Neuroscience.

[58]  Bb Lee,et al.  Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus) , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  Heiner Deubel,et al.  Perceptual consequences of ocular lens overshoot during saccadic eye movements , 1995, Vision Research.

[60]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[61]  C L Colby,et al.  The analysis of visual space by the lateral intraparietal area of the monkey: the role of extraretinal signals. , 1993, Progress in brain research.

[62]  B. Knight,et al.  Contrast gain control in the primate retina: P cells are not X-like, some M cells are , 1992, Visual Neuroscience.

[63]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[64]  A theory of maximizing sensory information. , 1992, Biological cybernetics.

[65]  L. Stark,et al.  Ocular proprioception and efference copy in registering visual direction , 1991, Vision Research.

[66]  F A Miles,et al.  Short latency ocular-following responses in man , 1990, Visual Neuroscience.

[67]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[68]  R. Watt Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[69]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[70]  H D Crane,et al.  Generation-V dual-Purkinje-image eyetracker. , 1985, Applied optics.

[71]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[72]  D. Burr,et al.  Selective depression of motion sensitivity during saccades. , 1982, The Journal of physiology.

[73]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[74]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[75]  J D Victor,et al.  How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. , 1981, The Journal of physiology.

[76]  D. H. Kelly Motion and vision. II. Stabilized spatio-temporal threshold surface. , 1979, Journal of the Optical Society of America.

[77]  F. Campbell,et al.  Saccadic omission: Why we do not see a grey-out during a saccadic eye movement , 1978, Vision Research.

[78]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[79]  L. Stark,et al.  The main sequence, a tool for studying human eye movements , 1975 .

[80]  F C VOLKMANN,et al.  Vision during voluntary saccadic eye movements. , 1962, Journal of the Optical Society of America.

[81]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .