Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance

[1]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[2]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[3]  Moon S. Kim,et al.  The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par) , 1994 .

[4]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[5]  John A. Gamon,et al.  Assessing leaf pigment content and activity with a reflectometer , 1999 .

[6]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[7]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[8]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[9]  J. Privette,et al.  Impact of Tissue, Canopy, and Landscape Factors on the Hyperspectral Reflectance Variability of Arid Ecosystems , 2000 .

[10]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[11]  N. M. Kelly,et al.  Spectral absorption features as indicators of water status in coast live oak ( Quercus agrifolia ) leaves , 2003 .

[12]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[13]  Jin Yu,et al.  Towards a supercontinuum-based infrared lidar , 2003 .

[14]  Songxin Tan,et al.  Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing. , 2004, Applied optics.

[15]  Jonathan A. R. Rall,et al.  Spectral ratio biospheric lidar , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Mohamed Cheriet,et al.  Estimating accurate multi-class probabilities with support vector machines , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[17]  K. Mengersen,et al.  Airborne laser scanning: Exploratory data analysis indicates potential variables for classification of individual trees or forest stands according to species , 2005 .

[18]  John B. Solie,et al.  Evaluation of Green, Red, and Near Infrared Bands for Predicting Winter Wheat Biomass, Nitrogen Uptake, and Final Grain Yield , 2005 .

[19]  W. Wagner,et al.  Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner , 2006 .

[20]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[21]  K. Itten,et al.  Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization , 2007 .

[22]  E. Næsset,et al.  Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data , 2009 .

[23]  Juha Hyyppä,et al.  Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[24]  K. Tansey,et al.  Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas , 2010 .

[25]  Xin Huang,et al.  Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance , 2011 .

[26]  Juha Hyyppä,et al.  Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification , 2011, Sensors.