A cut finite element method for a model of pressure in fractured media

We develop a robust cut finite element method for a model of diffusion in fractured media consisting of a bulk domain with embedded cracks. The crack has its own pressure field and can cut through the bulk mesh in a very general fashion. Starting from a common background bulk mesh, that covers the domain, finite element spaces are constructed for the interface and bulk subdomains leading to efficient computations of the coupling terms. The crack pressure field also uses the bulk mesh for its representation. The interface conditions are a generalized form of conditions of Robin type previously considered in the literature which allows the modeling of a range of flow regimes across the fracture. The method is robust in the following way: 1. Stability of the formulation in the full range of parameter choices; and 2. Not sensitive to the location of the interface in the background mesh. We derive an optimal order a priori error estimate and present illustrating numerical examples.

[1]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[2]  Luca Formaggia,et al.  A Hybrid High-Order Method for Darcy Flows in Fractured Porous Media , 2017, SIAM J. Sci. Comput..

[3]  Paola F. Antonietti,et al.  Discontinuous Galerkin Approximation of Flows in Fractured Porous Media on Polytopic Grids , 2019, SIAM J. Sci. Comput..

[4]  P. Hansbo,et al.  A simple finite element method for elliptic bulk problems with embedded surfaces , 2017, Computational Geosciences.

[5]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[6]  Martin Costabel,et al.  Crack Singularities for General Elliptic Systems , 2002 .

[7]  Robert Luce,et al.  Nitsche’s extended finite element method for a fracture model in porous media , 2016 .

[8]  Maxim A. Olshanskii,et al.  Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.

[9]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[10]  Maxim A. Olshanskii,et al.  A TRACE FINITE ELEMENT METHOD FOR A CLASS OF COUPLED BULK-INTERFACE TRANSPORT PROBLEMS ∗ , 2014, 1406.7694.

[11]  Peter Hansbo,et al.  A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.

[12]  Alessio Fumagalli,et al.  Dual Virtual Element Method for Discrete Fractures Networks , 2016, SIAM J. Sci. Comput..

[13]  P. Hansbo,et al.  A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .

[14]  Haijun Wu and Yuanming Xiao,et al.  An Unfitted hp-Interface Penalty Finite Element Method for Elliptic Interface Problems , 2019, Journal of Computational Mathematics.

[15]  Maxim A. Olshanskii,et al.  An unfitted finite element method for the Darcy problem in a fracture network , 2019, J. Comput. Appl. Math..

[16]  Peter Hansbo,et al.  Cut finite elements for convection in fractured domains , 2018, Computers & Fluids.

[17]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[18]  Peter Hansbo,et al.  Cut finite element methods for coupled bulk–surface problems , 2014, Numerische Mathematik.

[19]  E. Sanchez-Palencia,et al.  Phénomènes de transmission à travers des couches minces de conductivitéélevée , 1974 .

[20]  Jan M. Nordbotten,et al.  Robust Discretization of Flow in Fractured Porous Media , 2016, SIAM J. Numer. Anal..

[21]  Mats G. Larson,et al.  Stabilization of high order cut finite element methods on surfaces , 2017, IMA Journal of Numerical Analysis.

[22]  Jean E. Roberts,et al.  A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures , 2019, GEM - International Journal on Geomathematics.

[23]  Philippe Angot,et al.  ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS IN FRACTURED POROUS MEDIA , 2009 .

[24]  Peter Hansbo,et al.  Hybridized CutFEM for Elliptic Interface Problems , 2018, SIAM J. Sci. Comput..

[25]  Martin Costabel,et al.  Asymptotics Without Logarithmic Terms for Crack Problems , 2003 .

[26]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[27]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[28]  David Hart,et al.  Least-squares fit of an ellipse to anisotropic polar data: Application to azimuthal resistivity surveys in karst regions☆ , 1997 .

[29]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[30]  Peter Hansbo,et al.  A Nitsche-type Method for Helmholtz Equation with an Embedded Acoustically Permeable Interface , 2015, 1511.09363.

[31]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[32]  Peter Hansbo,et al.  A Nitsche method for elliptic problems on composite surfaces , 2017, 1705.08384.

[33]  P. Hansbo,et al.  A cut finite element method for elliptic bulk problems with embedded surfaces , 2018, GEM : international journal on geomathematics.

[34]  Fernando A. Morales,et al.  The narrow fracture approximation by channeled flow , 2010 .

[35]  Mats G. Larson,et al.  A simple embedded discrete fracture–matrix model for a coupled flow and transport problem in porous media , 2018, Computer Methods in Applied Mechanics and Engineering.

[36]  Peter Hansbo,et al.  Finite element approximation of the Laplace–Beltrami operator on a surface with boundary , 2015, Numerische Mathematik.