Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors

Abstract Pristine and various palladium (Pd) doped ZnO nanorods have been synthesized on the quartz crystal microbalance (QCM) for volatile organic compound (VOCs) sensors at room temperature. The doping concentrations were varied from 0 mol% to 2.5 mol% by using electrochemical deposition method. The diameters of the fabricated nanorods were in the range of 100–200 nm, and were increased with Pd doping. The tested VOCs included alcohols (ethanol, methanol, isopropyl), ester (ethyl acetate), aromatic (toluene, xylene), ketone (acetone) and chloroform in the different concentrations. The results indicated that the sensitivity of the sensing materials was enhanced with the increasing Pd doping concentrations except for the acetone and chloroform. The undoped ZnO nanorod sensor showed higher sensor response against to acetone and chloroform while exposing high concentration of two analytes due to the absorbing/adsorbing mechanism. All undoped and Pd doped nanorods sensors showed the highest sensitivity to xylene.

[1]  Yongming Hu,et al.  Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures , 2012, Sensors.

[2]  Hakan Urey,et al.  Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application , 2014 .

[3]  Mark B. Mitchell,et al.  Adsorption and Decomposition of Dimethyl Methylphosphonate on Metal Oxides , 1997 .

[4]  Andrea Cusano,et al.  Carbon nanotubes-coated multi-transducing sensors for VOCs detection , 2005 .

[5]  Wolfgang Göpel,et al.  Solid-state chemical sensors: Atomistic models and research trends , 1989 .

[6]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[7]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[8]  Sanjay Mathur,et al.  Metal Oxide Nanomaterials for Chemical Sensors , 2013 .

[9]  Le Anh Tuan,et al.  Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods , 2013 .

[10]  Nagy L. Torad,et al.  A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. , 2009, Journal of hazardous materials.

[11]  Z. Öztürk,et al.  Electrical conduction and NO2 gas sensing properties of ZnO nanorods , 2014 .

[12]  A. Erol,et al.  Synthesis and humidity sensing analysis of ZnS nanowires , 2012 .

[13]  S. Okur,et al.  Humidity Sensing Properties of CdS Nanoparticles Synthesized by Chemical Bath Deposition Method , 2011 .

[14]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .

[15]  R. F. Wolffenbuttel,et al.  Integrated tactile imager with an intrinsic contour detection option , 1989 .

[16]  Salih Okur,et al.  VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning , 2014 .

[17]  Zafer Ziya Öztürk,et al.  Hydrogen sensing properties of ZnO nanorods: Effects of annealing, temperature and electrode structure , 2014 .

[18]  Jianzhong Zhu,et al.  Humidity sensing properties of Pd2+-doped ZnO nanotetrapods , 2007 .

[19]  S. Shishiyanu,et al.  Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor , 2005 .

[20]  T. A. Jones,et al.  The role of catalysis in solid-state gas sensors , 1986 .

[21]  I. Szilágyi,et al.  Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD) , 2014 .

[22]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[23]  Ziqiang Zhu,et al.  EFFECT OF PD2+ DOPING ON ZNO NANOTETRAPODS AMMONIA SENSOR , 2006 .

[24]  Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles , 2014, Beilstein journal of nanotechnology.

[25]  D. Kohl The role of noble metals in the chemistry of solid-state gas sensors , 1990 .

[26]  G. Neri,et al.  Effect of indium doping on ZnO based-gas sensor for CO , 2014 .

[27]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[28]  W. Y. Wang,et al.  Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2 , 2004 .

[29]  M. Riad,et al.  Characterization of various zinc oxide catalysts and their activity in the dehydration-dehydrogenation of isobutanol , 2008 .

[30]  M. Ganchev,et al.  Application of electrochemically deposited nanostructured ZnO layers on quartz crystal microbalance for NO2 detection , 2014 .

[31]  Pt-modified carbon nanotube networked layers for enhanced gas microsensors , 2011 .

[32]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[33]  A. Tunc,et al.  Electrochemical Growth of Pd Doped ZnO Nanorods , 2015 .

[34]  V. Mikli,et al.  Sensitivity of ZnO films doped with Er, Ta and Co to NH3 at room temperature , 2007 .

[35]  William A. Goddard,et al.  Water adsorption on stepped ZnO surfaces from MD simulation , 2010 .

[36]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[37]  Salih Okur,et al.  Humidity sensing properties of ZnO nanoparticles synthesized by sol–gel process , 2010 .

[38]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[39]  Qian Sun,et al.  Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape. , 2011, Journal of hazardous materials.

[40]  H. Ouada,et al.  Humidity-sensing properties of ZnO QDs coated QCM: Optimization, modeling and kinetic investigations , 2014 .

[41]  C. Rivkin,et al.  An overview of hydrogen safety sensors and requirements , 2011 .

[42]  Ichiro Matsubara,et al.  Effect of high-humidity aging on performance of tungsten oxide-type aromatic compound sensors , 2012 .

[43]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[44]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[45]  F. Yakuphanoglu,et al.  Preparation of semiconductor ZnO powders by sol-gel method: Humidity sensors , 2013 .

[46]  Giovanni Neri,et al.  Al-doped ZnO for highly sensitive CO gas sensors , 2014 .

[47]  S. Okur,et al.  Humidity adsorption kinetics of a trypsin gel film. , 2012, Journal of colloid and interface science.

[48]  Nguyen Van Hieu,et al.  Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods , 2011 .

[49]  Jing Wang,et al.  Mechanism for toluene detection of flower-like ZnO sensors prepared by hydrothermal approach: Charge transfer , 2015 .

[50]  S. Tarlo,et al.  The health effects of non-industrial indoor air pollution. , 2008, The Journal of allergy and clinical immunology.

[51]  Sandeep Kumar Vashist,et al.  Recent Advances in Quartz Crystal Microbalance-Based Sensors , 2011, J. Sensors.

[52]  A. Erol,et al.  Morphology-dependent humidity adsorption kinetics of ZnO nanostructures , 2012 .

[53]  Ming Duan,et al.  QCM chemical sensor based on ZnO colloid spheres for the alcohols , 2014 .

[54]  S. Ringer,et al.  Structural and electronic properties of Eu- and Pd-doped ZnO , 2011, Nanoscale research letters.

[55]  Salih Okur,et al.  Humidity sensing properties of ZnO-based fibers by electrospinning. , 2011, Talanta.

[56]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[57]  Toshio Itoh,et al.  Effects of High-Humidity Aging on Platinum, Palladium, and Gold Loaded Tin Oxide—Volatile Organic Compound Sensors , 2010, Sensors.