Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins

Advances in nanotechnology have allowed scientists to study biological processes on an unprecedented nanoscale molecule-by-molecule basis, opening the door to addressing many important biological problems. A phenomenon observed in recent nanoscale single-molecule biophysics experiments is subdiffusion, which largely departs from the classical Brownian diffusion theory. In this paper, by incorporating fractional Gaussian noise into the generalized Langevin equation, we formulate a model to describe subdiffusion. We conduct a detailed analysis of the model, including (i) a spectral analysis of the stochastic integro-differential equations introduced in the model and (ii) a microscopic derivation of the model from a system of interacting particles. In addition to its analytical tractability and clear physical underpinning, the model is capable of explaining data collected in fluorescence studies on single protein molecules. Excellent agreement between the model prediction and the single-molecule experimental data is seen.

[1]  D. C. Champeney A handbook of Fourier theorems , 1987 .

[2]  X. Zhuang,et al.  Correlating Structural Dynamics and Function in Single Ribozyme Molecules , 2002, Science.

[3]  Lokenath Debnath,et al.  Introduction to the Theory and Application of the Laplace Transformation , 1974, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  A. Ruzmaikina Stochastic calculus with fractional Brownian motion , 1999 .

[5]  Shimon Weiss,et al.  Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy , 2000, Nature Structural Biology.

[6]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[7]  Desmond P. Taylor,et al.  On the SelfSimilar Nature of Ethernet Traffic (Extended Version) , 2007 .

[8]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[9]  W. Dai ITO ’ S FORMULA WITH RESPECT TO FRACTIONAL BROWNIAN MOTION AND ITS APPLICATION , .

[10]  Murad S. Taqqu,et al.  A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions , 1998 .

[11]  J. Winkler,et al.  Electron Transfer In Proteins , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[12]  R. Zare,et al.  Optical detection of single molecules. , 1997, Annual review of biophysics and biomolecular structure.

[13]  Stochastic calculus with respect to fractional Brownian motion , 2006 .

[14]  X. Xie,et al.  Erratum: Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited , 2006 .

[15]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[16]  R. Kupferman Fractional Kinetics in Kac–Zwanzig Heat Bath Models , 2004 .

[17]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[18]  Mark Crovella,et al.  Self-Similarity in World Wide Web Traffic: Evidence and Causes , 1996, SIGMETRICS.

[19]  M. Shlesinger,et al.  Beyond Brownian motion , 1996 .

[20]  L. Rogers Arbitrage with Fractional Brownian Motion , 1997 .

[21]  Integration Questions Related to Fractional Brownian Motion Yz , 2000 .

[22]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[23]  周建和,et al.  Anomalous Diffusion in Disordered Media , 2000 .

[24]  Murad S. Taqqu Sojourn in an elliptical domain , 1986 .

[25]  W. E. Moerner,et al.  A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics , 2002 .

[26]  Intégrale stochastique pour le mouvement brownien fractionnaire , 2000 .

[27]  X. Xie,et al.  Fluctuating Enzymes: Lessons from Single‐Molecule Studies , 2006 .

[28]  T. L. Hill,et al.  An Introduction to Statistical Thermodynamics , 1960 .

[29]  S. Resnick,et al.  Is network traffic approximated by stable Levy motion or fractional Brownian motion , 2002 .

[30]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[31]  X. Xie,et al.  Observation of a power-law memory kernel for fluctuations within a single protein molecule. , 2005, Physical review letters.

[32]  S. Kou Stochastic Networks in Nanoscale Biophysics , 2008 .

[33]  X. Xie,et al.  Optical studies of single molecules at room temperature. , 1998, Annual review of physical chemistry.

[34]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[35]  X. Xie,et al.  Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. , 2004, Physical review letters.

[36]  O. Mazet,et al.  Stochastic calculus with respect to fractional Brownian motion , 2006 .

[37]  M. Taqqu,et al.  Are classes of deterministic integrands for fractional Brownian motion on an interval complete , 2001 .

[38]  T. Mikosch,et al.  Stochastic integral equations without probability , 2000 .

[39]  J. W. Humberston Classical mechanics , 1980, Nature.

[40]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[41]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[42]  Michel Orrit,et al.  Ten Years of Single-Molecule Spectroscopy. , 2000, The journal of physical chemistry. A.

[43]  M. Taqqu,et al.  Integration questions related to fractional Brownian motion , 2000 .

[44]  C. C. Heyde,et al.  Itô's formula with respect to fractional Brownian motion and its application , 1996 .

[45]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[46]  S. Kou Stochastic Networks in Nanoscale Biophysics : Modeling Enzymatic Reaction of a Single Protein , 2008 .

[47]  V. Letokhov Principles of nonlinear optical spectroscopy , 1998 .

[48]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[49]  Christian Bender,et al.  Arbitrage with fractional Brownian motion , 2007 .

[50]  Gennady Samorodnitsky,et al.  Patterns of buffer overflow in a class of queues with long memory in the input stream , 1997 .

[51]  Azer Bestavros,et al.  Self-similarity in World Wide Web traffic: evidence and possible causes , 1996, SIGMETRICS '96.

[52]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[53]  H. Peter Lu,et al.  Single-molecule Enzymology* , 1999, The Journal of Biological Chemistry.

[54]  C. Heyde A RISKY ASSET MODEL WITH STRONG DEPENDENCE THROUGH FRACTAL ACTIVITY TIME , 1999 .

[55]  Antoine M. van Oijen,et al.  Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited , 2006, Nature chemical biology.

[56]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[57]  X. Xie,et al.  Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer , 2003, Science.

[58]  Peter W. Glynn,et al.  On the maximum workload of a queue fed by fractional Brownian motion , 2001 .

[59]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[60]  Takis Konstantopoulos,et al.  Fractional Brownian Approximations of Queueing Networks , 1996 .

[61]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[62]  G. Gripenberg,et al.  On the prediction of fractional Brownian motion , 1996, Journal of Applied Probability.

[63]  Bayesian analysis of single-molecule experimental data - Discussion , 2005 .

[64]  Jun S. Liu,et al.  Bayesian analysis of single‐molecule experimental data , 2005 .

[65]  Wei Min,et al.  Single-molecule Michaelis-Menten equations. , 2005, The journal of physical chemistry. B.

[66]  Guobin Luo,et al.  Fluctuating enzymes: lessons from single-molecule studies. , 2005, Accounts of chemical research.

[67]  S. J. Lin,et al.  Stochastic analysis of fractional brownian motions , 1995 .

[68]  M. Tokuyama,et al.  Nonequilibrium statistical description of anomalous diffusion , 1999 .

[69]  Kurt Warncke,et al.  Nature of biological electron transfer , 1992, Nature.