Electrochemical Detection of Glutathione Using a Poly(caffeic acid) Nanocarbon Composite Modified Electrode

A modified glassy carbon electrode was prepared through electropolymerization of caffeic acid in the presence of either carbon nanotubes or nano-carbon drop cast onto the electrode surface. The voltammetric behaviour of the electrode was characterized using the ortho-quinone moiety on the caffeic acid unit and the surface loading optimized for current response. The nanocomposite mediated electrode was used for the sensitive detection of glutathione at concentrations as low as 500 nM.

[1]  M. Mazloum‐Ardakani,et al.  Selective and Simultaneous Voltammetric Determination of Glutathione, Uric Acid and Penicillamine by a Modified Carbon Nanotube Paste Electrode , 2013 .

[2]  R. Compton,et al.  Electrochemical Detection of NADH, Cysteine, or Glutathione Using a Caffeic Acid Modified Glassy Carbon Electrode , 2013 .

[3]  R. Compton,et al.  Electrochemical determination of glutathione: a review. , 2012, The Analyst.

[4]  Tsz Woon Benedict Lo,et al.  The use of nano-carbon as an alternative to multi-walled carbon nanotubes in modified electrodes for adsorptive stripping voltammetry , 2012 .

[5]  R. Collins,et al.  In Situ Self Assembly of Thiolated ortho-Quinone Capped Electrocatalysts for Bioanalytical Applications , 2011 .

[6]  Je Hoon Oh,et al.  Evaluation of the limit-of-detection capability of carbon black-polymer composite sensors for volatile breath biomarkers , 2010 .

[7]  Mehmet Aslanoglu,et al.  Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes , 2010 .

[8]  R. Compton,et al.  Effects of thin-layer diffusion in the electrochemical detection of nicotine on basal plane pyrolytic graphite (BPPG) electrodes modified with layers of multi-walled carbon nanotubes (MWCNT-BPPG) , 2010 .

[9]  J. Raoof,et al.  Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode , 2009 .

[10]  Jae-Joon Lee,et al.  Electrochemical Sensors Based on Carbon Nanotubes , 2009, Sensors.

[11]  Liping Guo,et al.  Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. , 2009, Analytical biochemistry.

[12]  H. Budnikov,et al.  Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes , 2009 .

[13]  L. Tillekeratne,et al.  Electrochemical and Electrocatalytic Properties of Imidazole Analogues of the Redox Cofactor Pyrroloquinoline Quinone , 2008 .

[14]  L. Kubota,et al.  Electrocatalysis of reduced L-glutathione oxidation by iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) adsorbed on multi-walled carbon nanotubes. , 2008, Talanta.

[15]  R. Compton,et al.  Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes , 2008 .

[16]  Lauro T Kubota,et al.  Electrocatalytic activity of 4-nitrophthalonitrile-modified electrode for the l-glutathione detection. , 2008, Journal of pharmaceutical and biomedical analysis.

[17]  José M Pingarrón,et al.  Role of carbon nanotubes in electroanalytical chemistry: a review. , 2008, Analytica chimica acta.

[18]  Wilfred Chen,et al.  Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. , 2007, Talanta.

[19]  Jiangli Zhai,et al.  Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. , 2007, Biosensors & bioelectronics.

[20]  Xiaoyong Zou,et al.  A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. , 2007, Analytical biochemistry.

[21]  Xiaoling Yang,et al.  Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. , 2007, Talanta.

[22]  H. Luo,et al.  Caffeic Acid‐Modified Glassy Carbon Electrode for the Simultaneous Determination of Epinephrine and Dopamine , 2007 .

[23]  Z. Červinková,et al.  Determination of reduced and oxidized glutathione in biological samples using liquid chromatography with fluorimetric detection. , 2007, Journal of pharmaceutical and biomedical analysis.

[24]  R. Compton,et al.  Electroanalytical Exploitation of Nitroso Phenyl Modified Carbon-Thiol Interactions: Application to the Low Voltage Determination of Thiols , 2007 .

[25]  Robert B. Smith,et al.  Molecular anchors - mimicking metabolic processes in thiol analysis , 2006 .

[26]  Xiaobo Ji,et al.  Understanding the Electrochemical Reactivity of Bamboo Multiwalled Carbon Nanotubes: the Presence of Oxygenated Species at Tube Ends May not Increase Electron Transfer Kinetics , 2006 .

[27]  R. Strongin,et al.  Electrochemical detection of glutathione using redox indicators. , 2006, Analytical chemistry.

[28]  Yingna Guo,et al.  Amperometric Glucose Biosensors Based on Integration of Glucose Oxidase onto Prussian Blue/Carbon Nanotubes Nanocomposite Electrodes , 2006 .

[29]  Xiliang Luo,et al.  Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. , 2006, Analytica chimica acta.

[30]  C. Cha,et al.  Electrochemical determination of reduced glutathione (GSH) by applying the powder microelectrode technique , 2006 .

[31]  H. Luo,et al.  Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. , 2006, Biosensors & bioelectronics.

[32]  Lee Yook Heng,et al.  Demonstration of the advantages of using bamboo-like nanotubes for electrochemical biosensor applications compared with single walled carbon nanotubes , 2005 .

[33]  L. Mao,et al.  Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols. , 2005, Analytical chemistry.

[34]  Joseph Wang Nanomaterial-based electrochemical biosensors. , 2005, The Analyst.

[35]  Mandana Amiri,et al.  Mercaptotriazole as a nucleophile in addition to o-quinone electrochemically derived from catechol: application to electrosynthesis of a new group of triazole compounds , 2005 .

[36]  R. R. Moore,et al.  Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. , 2004, The Analyst.

[37]  E. Bertini,et al.  Analysis of glutathione: implication in redox and detoxification. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[38]  T. Kuwana,et al.  Analysis of thiols with tyrosinase-modified carbon paste electrodes based on blocking of substrate recycling. , 2002, Biosensors & bioelectronics.

[39]  C. Giacomelli,et al.  Electrochemistry of Caffeic Acid Aqueous Solutions with pH 2.0 to 8.5 , 2002 .

[40]  N. Lawrence,et al.  ELECTROCHEMICAL DETECTION OF GLUTATHIONE: AN ELECTROCHEMICALLY INITIATED REACTION PATHWAY , 2002 .

[41]  Richard G. Compton,et al.  Electrochemical Determination of Thiols: A Perspective , 2002 .

[42]  P. C. White,et al.  Electrochemically initiated 1,4 additions: a versatile route to the determination of thiols , 2001 .

[43]  P. C. White,et al.  Electrochemically Driven Derivatisation-Detection of Cysteine , 2001 .

[44]  N. Lawrence,et al.  Electrochemical detection of thiols in biological media. , 2001, Talanta.

[45]  M. Reid,et al.  Glutathione in disease , 2001, Current opinion in clinical nutrition and metabolic care.

[46]  S. Threlfell,et al.  Electroanalytical exploitation of quinone-thiol interactions: application to the selective determination of cysteine. , 2001, The Analyst.

[47]  M. Karayannis,et al.  The Importance of Surface Coverage in the Electrochemical Study of Chemically Modified Electrodes , 2000 .

[48]  T. Inoue,et al.  Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. , 2000, Analytical chemistry.

[49]  L. Mao,et al.  Amperometric Biosensor for Glutathione Based on Osmium‐Polyvinylpyridine Gel Polymer and Glutathione Sulfhydryl Oxidase , 2000 .

[50]  H. Zare,et al.  Caffeic acid modified glassy carbon electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) , 2000 .

[51]  I. Pogribny,et al.  A new HPLC method for the simultaneous determination of oxidized and reduced plasma aminothiols using coulometric electrochemical detection. , 1999, The Journal of nutritional biochemistry.

[52]  Christine Kranz,et al.  Controlled Electrochemical Preparation of Amperometric Biosensors Based on Conducting Polymer Multilayers , 1998 .

[53]  Ioanis Katakis,et al.  Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors , 1997 .

[54]  D. Spitz,et al.  Analysis of glutathione, glutathione disulfide, cysteine, homocysteine, and other biological thiols by high-performance liquid chromatography following derivatization by n-(1-pyrenyl)maleimide. , 1995, Analytical biochemistry.

[55]  P. Ueland,et al.  Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. , 1992, Analytical biochemistry.

[56]  H. Abruña Coordination chemistry in two dimensions: chemically modified electrodes , 1988 .

[57]  J. Richie,et al.  The determination of glutathione, cyst(e)ine, and other thiols and disulfides in biological samples using high-performance liquid chromatography with dual electrochemical detection. , 1987, Analytical biochemistry.

[58]  R. Adams,et al.  Determination of reduced glutathione in guinea pig and rat tissue by HPLC with electrochemical detection. , 1978, Life sciences.

[59]  Avrom I. Medalia,et al.  Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy , 1969 .