GRIDSS2: comprehensive characterisation of somatic structural variation using single breakend variants and structural variant phasing

[1]  Daniel L. Cameron,et al.  VIRUSBreakend: Viral Integration Recognition Using Single Breakends , 2020, bioRxiv.

[2]  Daniel L. Cameron,et al.  Unscrambling cancer genomes via integrated analysis of structural variation and copy number , 2020, bioRxiv.

[3]  Andy Wing Chun Pang,et al.  A multi-platform reference for somatic structural variation detection , 2020, bioRxiv.

[4]  William T. Harvey,et al.  The structure, function and evolution of a complete human chromosome 8 , 2020, Nature.

[5]  Ken Chen,et al.  A robust benchmark for detection of germline large deletions and insertions , 2020, Nature Biotechnology.

[6]  Ken Chen,et al.  Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing , 2018, Nature Genetics.

[7]  Nuno A. Fonseca,et al.  Patterns of somatic structural variation in human cancer genomes , 2020, Nature.

[8]  Steven J. M. Jones,et al.  Pan-cancer analysis of whole genomes , 2020, Nature.

[9]  M. Schatz,et al.  Recovering rearranged cancer chromosomes from karyotype graphs , 2019, BMC Bioinformatics.

[10]  S. Sleijfer,et al.  Pan-cancer whole-genome analyses of metastatic solid tumours , 2019, Nature.

[11]  Jose Espejo Valle-Inclan,et al.  GRIDSS, PURPLE, LINX: Unscrambling the tumor genome via integrated analysis of structural variation and copy number , 2019, bioRxiv.

[12]  Leon Di Stefano,et al.  Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software , 2019, Nature Communications.

[13]  Y. Kamatani,et al.  Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing , 2019, Genome Biology.

[14]  Edwin Cuppen,et al.  Mapping and phasing of structural variation in patient genomes using nanopore sequencing , 2017, Nature Communications.

[15]  Daniel L. Cameron,et al.  GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly , 2017, bioRxiv.

[16]  Joachim Weischenfeldt,et al.  SvABA: genome-wide detection of structural variants and indels by local assembly , 2018, Genome research.

[17]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[18]  Susumu Goto,et al.  Linking Virus Genomes with Host Taxonomy , 2016, Viruses.

[19]  A. Krogh,et al.  Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale , 2015, GigaScience.

[20]  Modesto Orozco,et al.  Comprehensive characterization of complex structural variations in cancer by directly comparing genome sequence reads , 2014, Nature Biotechnology.

[21]  Andrew Menzies,et al.  Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes , 2014, Science.

[22]  Travis E. Abbott,et al.  BreakDancer: Identification of Genomic Structural Variation from Paired-End Read Mapping. , 2014, Current protocols in bioinformatics.

[23]  Jan Schröder,et al.  Socrates: identification of genomic rearrangements in tumour genomes by re-aligning soft clipped reads , 2014, Bioinform..

[24]  Zhongming Zhao,et al.  VirusFinder: Software for Efficient and Accurate Detection of Viruses and Their Integration Sites in Host Genomes through Next Generation Sequencing Data , 2013, PloS one.

[25]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[26]  V. Beneš,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[27]  Gabor T. Marth,et al.  SSW Library: An SIMD Smith-Waterman C/C++ Library for Use in Genomic Applications , 2012, PloS one.

[28]  K. Hayden Human centromere genomics: now it's personal , 2012, Chromosome Research.

[29]  Richard S. Sandstrom,et al.  BEDOPS: high-performance genomic feature operations , 2012, Bioinform..

[30]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[31]  Benjamin J. Raphael,et al.  An integrative probabilistic model for identification of structural variation in sequencing data , 2012, Genome Biology.

[32]  Michael C. Rusch,et al.  CREST maps somatic structural variation in cancer genomes with base-pair resolution , 2011, Nature Methods.

[33]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[34]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[35]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[36]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[37]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[38]  Helen Thomson,et al.  Now it's personal , 2009 .

[39]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[40]  Ken Chen,et al.  Structural Variant Breakpoint Detection with novoBreak. , 2018, Methods in molecular biology.

[41]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.