E. coli Plasmid Vectors

[1]  R. Losick,et al.  Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis , 1995, Journal of bacteriology.

[2]  C. Chamberlain,et al.  Watching Proteins in the Wild: Fluorescence Methods to Study Protein Dynamics in Living Cells , 2000, Traffic.

[3]  K. Struhl,et al.  Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience). Host-Range Shuttle System for Gene Insertion into the Chromosomes of Gram-negative Bacteria. , 1988 .

[4]  C. Georgopoulos,et al.  The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. , 1994, The EMBO journal.

[5]  J. Sulston,et al.  Preparation of large numbers of plasmid DNA samples in microtiter plates by the alkaline lysis method. , 1987, Gene analysis techniques.

[6]  Douglas C. Youvan,et al.  Red-Shifted Excitation Mutants of the Green Fluorescent Protein , 1995, Bio/Technology.

[7]  S. Grimm,et al.  High-throughput method for isolating plasmid DNA with reduced lipopolysaccharide content. , 2000, BioTechniques.

[8]  Gregory J. Phillips,et al.  Green Fluorescent Protein Functions as a Reporter for Protein Localization in Escherichia coli , 2000, Journal of bacteriology.

[9]  R. Rudolph,et al.  In vitro folding of inclusion body proteins , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[10]  K. Struhl,et al.  Regional codon randomization: defining a TATA-binding protein surface required for RNA polymerase III transcription. , 1993, Science.

[11]  T. Hazelrigg,et al.  Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis , 1994, Nature.

[12]  M. Rosenberg,et al.  Expression, identification, and characterization of recombinant gene products in Escherichia coli. , 1987, Methods in enzymology.

[13]  S. Kain,et al.  Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter* , 1998, The Journal of Biological Chemistry.

[14]  Andrea H. Brand,et al.  Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins , 2002, Nature Cell Biology.

[15]  N. Mackman,et al.  Release of a chimeric protein into the medium from Escherichia coli using the C‐terminal secretion signal of haemolysin. , 1987, The EMBO journal.

[16]  D. Belin,et al.  An in vivo pathway for disulfide bond isomerization in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Garner,et al.  High-throughput DNA preparation system. , 1992, Genetic analysis, techniques and applications.

[18]  Martin J. Pollard,et al.  High-throughput plasmid purification for capillary sequencing. , 2001, Genome research.

[19]  D. Botstein,et al.  Movement of yeast cortical actin cytoskeleton visualized in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W. Margolin,et al.  Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. , 2000, Methods.

[21]  M. Leineweber,et al.  Unexpected translation initiation within the coding region of eukaryotic genes expressed in Escherichia coli. , 1988, Gene.

[22]  C. Zwieb,et al.  Association of degradation and secretion of three chimeric polypeptides in Escherichia coli , 1988, Journal of bacteriology.

[23]  D. Missiakas,et al.  Making and breaking disulfide bonds. , 1997, Annual review of microbiology.

[24]  E. Skowronski,et al.  Magnetic, microplate-format plasmid isolation protocol for high-yield, sequencing-grade DNA. , 2000, BioTechniques.

[25]  J. W. Hastings,et al.  Energy transfer in a bioluminescent system , 1971, Journal of cellular physiology.

[26]  E. Sulkowski Purification of proteins by IMAC , 1985 .

[27]  J. Kawai,et al.  Automated filtration-based high-throughput plasmid preparation system. , 1999, Genome research.

[28]  L. Hillier,et al.  High-throughput plasmid DNA purification for 3 cents per sample. , 1999, Nucleic acids research.

[29]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[30]  Mary M. Yang,et al.  Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. , 1996, Gene.

[31]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Lauber,et al.  Automated Sample-Preparation Technologies in Genome Sequencing Projects , 2000, DNA sequence : the journal of DNA sequencing and mapping.

[33]  Linzhao Cheng,et al.  Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells , 1996, Nature Biotechnology.

[34]  G. Patterson,et al.  Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. , 1997, Biophysical journal.

[35]  William W. Ward,et al.  SPECTROPHOTOMETRIC IDENTITY OF THE ENERGY TRANSFER CHROMOPHORES IN RENILLA AND AEQUOREA GREEN‐FLUORESCENT PROTEINS , 1980 .

[36]  M. Kitagawa,et al.  Chaperone Coexpression Plasmids: Differential and Synergistic Roles of DnaK-DnaJ-GrpE and GroEL-GroES in Assisting Folding of an Allergen of Japanese Cedar Pollen, Cryj2, inEscherichia coli , 1998, Applied and Environmental Microbiology.

[37]  D. Konecki,et al.  TurboPrep II: an inexpensive, high-throughput plasmid template preparation protocol. , 1998, BioTechniques.

[38]  M. Adams,et al.  High throughput direct end sequencing of BAC clones. , 1999, Nucleic acids research.

[39]  J. Haseloff,et al.  GFP in plants. , 1995, Trends in genetics : TIG.

[40]  J. Porath,et al.  Development of immobilized metal affinity chromatography. III: Interaction of oligopeptides with immobilized nickel iminodiacetate , 1985 .

[41]  O. Fayet,et al.  A set of pBR322-compatible plasmids allowing the testing of chaperone-assisted folding of proteins overexpressed in Escherichia coli. , 1997, Analytical biochemistry.

[42]  W. Telford,et al.  Four-color flow cytometric detection of retrovirally expressed red, yellow, green, and cyan fluorescent proteins. , 2001, BioTechniques.

[43]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[44]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[45]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[46]  P. Cegłowski,et al.  Secretion of streptokinase fusion proteins from Escherichia coli cells through the hemolysin transporter. , 1995, Gene.

[47]  I. Holland,et al.  Protein secretion pathways in Escherichia coli , 1994 .

[48]  T. Creighton,et al.  Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. , 1995, Biochemistry.

[49]  Piero Carninci,et al.  Simple and rapid preparation of plasmid template by a filtration method using microtiter filter plates. , 1997, Nucleic acids research.

[50]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[51]  E. Mardis High-throughput detergent extraction of M13 subclones for fluorescent DNA sequencing. , 1994, Nucleic acids research.

[52]  S R Kain,et al.  Dual color detection of cyan and yellow derivatives of green fluorescent protein using conventional fluorescence microscopy and 35-mm photography. , 2000, Methods in enzymology.

[53]  J. Beckwith,et al.  Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins , 1998, The EMBO journal.

[54]  J. Y. Chin,et al.  Aequorea green fluorescent protein analysis by flow cytometry. , 1995, Cytometry.

[55]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[56]  W. M. Westler,et al.  Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. , 1993, Biochemistry.

[57]  F. Baneyx,et al.  Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins fromE. coli , 1997, Applied biochemistry and biotechnology.

[58]  J. Mccoy,et al.  A Thioredoxin Gene Fusion Expression System That Circumvents Inclusion Body Formation in the E. coli Cytoplasm , 1993, Bio/Technology.

[59]  A. Mukhopadhyay,et al.  Inclusion bodies and purification of proteins in biologically active forms. , 1997, Advances in biochemical engineering/biotechnology.

[60]  Koreaki Ito,et al.  Differential in Vivo Roles Played by DsbA and DsbC in the Formation of Protein Disulfide Bonds* , 1997, The Journal of Biological Chemistry.

[61]  J. Jansson,et al.  Monitoring of GFP-tagged bacterial cells. , 1998, Methods in molecular biology.

[62]  J. Neefjes,et al.  From fixed to FRAP: measuring protein mobility and activity in living cells , 2001, Nature Cell Biology.

[63]  Martin Chalfie,et al.  Green fluorescent protein : properties, applications, and protocols , 2005 .

[64]  J. Porath Immobilized metal ion affinity chromatography. , 1992, Protein expression and purification.