$t$ -Private Information Retrieval Schemes Using Transitive Codes
暂无分享,去创建一个
Camilla Hollanti | David A. Karpuk | Ragnar Freij-Hollanti | Oliver W. Gnilke | Anna-Lena Horlemann-Trautmann | David Karpuk | Ivo Kubjas | C. Hollanti | Anna-Lena Horlemann-Trautmann | Ivo Kubjas | O. W. Gnilke | Ragnar Freij-Hollanti
[1] Alexandre Graell i Amat,et al. Private information retrieval in distributed storage systems using an arbitrary linear code , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).
[2] Camilla Hollanti,et al. Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..
[3] Klim Efremenko,et al. 3-Query Locally Decodable Codes of Subexponential Length , 2008 .
[4] Salim El Rouayheb,et al. Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.
[5] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[6] Hua Sun,et al. Private Information Retrieval from MDS Coded Data With Colluding Servers: Settling a Conjecture by Freij-Hollanti et al. , 2018, IEEE Transactions on Information Theory.
[7] Sennur Ulukus,et al. The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.
[8] Minghua Chen,et al. Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data Storage Systems , 2007, Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007).
[9] Hua Sun,et al. The Capacity of Private Information Retrieval , 2017, IEEE Transactions on Information Theory.
[10] Zeev Dvir,et al. 2-Server PIR with Sub-Polynomial Communication , 2014, STOC.
[11] Camilla Hollanti,et al. Private information retrieval schemes for codec data with arbitrary collusion patterns , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).
[12] Hsuan-Yin Lin,et al. Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes , 2017, IEEE Transactions on Information Theory.
[13] Eyal Kushilevitz,et al. Private information retrieval , 1998, JACM.
[14] Eitan Yaakobi,et al. Codes for distributed PIR with low storage overhead , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).
[15] Kannan Ramchandran,et al. One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.
[16] Dimitris S. Papailiopoulos,et al. XORing Elephants: Novel Erasure Codes for Big Data , 2013, Proc. VLDB Endow..
[17] Zeev Dvir,et al. 2-Server PIR with Subpolynomial Communication , 2016, J. ACM.
[18] Hua Sun,et al. The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.
[19] Vinayak Ramkumar,et al. Binary, shortened projective reed muller codes for coded private information retrieva , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).
[20] Alexandre Graell i Amat,et al. On the Fundamental Limit of Private Information Retrieval for Coded Distributed Storage , 2018, ArXiv.