Least squares and Chebyshev fitting for parameter estimation in ODEs

We discuss the problem of determining parameters in mathematical models described by ordinary differential equations. This problem is normally treated by least squares fitting. Here some results from nonlinear mean square approximation theory are outlined which highlight the problems associated with nonuniqueness of global and local minima in this fitting procedure. Alternatively, for Chebyshev fitting and for the case of a single differential equation, we extend and apply the theory of [17, 18] which ensures a unique global best approximation. The theory is applied to two numerical examples which show how typical difficulties associated with mean square fitting can be avoided in Chebyshev fitting.