Brain response pattern identification of fMRI data using a particle swarm optimization-based approach

Many neuroscience studies have been devoted to understand brain neural responses correlating to cognition using functional magnetic resonance imaging (fMRI). In contrast to univariate analysis to identify response patterns, it is shown that multi-voxel pattern analysis (MVPA) of fMRI data becomes a relatively effective approach using machine learning techniques in the recent literature. MVPA can be considered as a multi-objective pattern classification problem with the aim to optimize response patterns, in which informative voxels interacting with each other are selected, achieving high classification accuracy associated with cognitive stimulus conditions. To solve the problem, we propose a feature interaction detection framework, integrating hierarchical heterogeneous particle swarm optimization and support vector machines, for voxel selection in MVPA. In the proposed approach, we first select the most informative voxels and then identify a response pattern based on the connectivity of the selected voxels. The effectiveness of the proposed approach was examined for the Haxby’s dataset of object-level representations. The computational results demonstrated higher classification accuracy by the extracted response patterns, compared to state-of-the-art feature selection algorithms, such as forward selection and backward selection.

[1]  M. Raichle,et al.  Disease and the brain's dark energy , 2010, Nature Reviews Neurology.

[2]  Tianzi Jiang,et al.  Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: A review of resting-state fMRI studies , 2008, Neuropsychologia.

[3]  J. Touryan,et al.  Isolation of Relevant Visual Features from Random Stimuli for Cortical Complex Cells , 2002, The Journal of Neuroscience.

[4]  Guoli Ji,et al.  TotalPLS: Local Dimension Reduction for Multicategory Microarray Data , 2014, IEEE Transactions on Human-Machine Systems.

[5]  Swagatam Das,et al.  Simultaneous feature selection and weighting - An evolutionary multi-objective optimization approach , 2015, Pattern Recognit. Lett..

[6]  D. Hu,et al.  Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. , 2012, Brain : a journal of neurology.

[7]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[8]  Stjepan Oreski,et al.  Genetic algorithm-based heuristic for feature selection in credit risk assessment , 2014, Expert Syst. Appl..

[9]  Dinggang Shen,et al.  Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection , 2005, NeuroImage.

[10]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[11]  Siti Mariyam Shamsuddin,et al.  Particle Swarm Optimization: Technique, System and Challenges , 2011 .

[12]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[13]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[14]  Karim Faez,et al.  An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system , 2008, Appl. Math. Comput..

[15]  Xin-She Yang,et al.  BBA: A Binary Bat Algorithm for Feature Selection , 2012, 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images.

[16]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[17]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[18]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[19]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[20]  Mark A. Elliott,et al.  Comparison of auditory and visual oddball fMRI in schizophrenia , 2014, Schizophrenia Research.

[21]  Sanghamitra Bandyopadhyay,et al.  Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients , 2007, Inf. Sci..

[22]  Ron Kohavi,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998 .

[23]  W. Art Chaovalitwongse,et al.  Sparse optimization in feature selection: application in neuroimaging , 2014, J. Glob. Optim..

[24]  Xuefeng Zheng,et al.  Feature subset selection approach based on fuzzy rough set for high-dimensional data , 2014, 2014 IEEE International Conference on Granular Computing (GrC).

[25]  Silvia Casado Yusta,et al.  Different metaheuristic strategies to solve the feature selection problem , 2009, Pattern Recognit. Lett..

[26]  Kun-Huang Chen,et al.  An improved particle swarm optimization for feature selection , 2011, Intell. Data Anal..

[27]  Mengjie Zhang,et al.  Particle Swarm Optimization for Feature Selection in Classification: A Multi-Objective Approach , 2013, IEEE Transactions on Cybernetics.

[28]  Michael R. Lyu,et al.  A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training , 2007, Appl. Math. Comput..

[29]  Lee M. Miller,et al.  Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data , 2004, NeuroImage.

[30]  Samuel H. Huang Dimensionality Reduction in Automatic Knowledge Acquisition: A Simple Greedy Search Approach , 2003, IEEE Trans. Knowl. Data Eng..

[31]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[32]  W. Art Chaovalitwongse,et al.  Information-Theoretic Based Feature Selection for Multi-Voxel Pattern Analysis of fMRI Data , 2012, Brain Informatics.

[33]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[34]  W. Art Chaovalitwongse,et al.  Voxel Selection Framework in Multi-Voxel Pattern Analysis of fMRI Data for Prediction of Neural Response to Visual Stimuli , 2014, IEEE Transactions on Medical Imaging.

[35]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[36]  Alper Ekrem Murat,et al.  A discrete particle swarm optimization method for feature selection in binary classification problems , 2010, Eur. J. Oper. Res..

[37]  Xiangyang Wang,et al.  Feature selection based on rough sets and particle swarm optimization , 2007, Pattern Recognit. Lett..

[38]  Xinpei Ma Hierarchical Heterogeneous Particle Swarm Optimization , 2014 .

[39]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[40]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[41]  Luiz Eduardo Soares de Oliveira,et al.  Feature selection using multi-objective genetic algorithms for handwritten digit recognition , 2002, Object recognition supported by user interaction for service robots.

[42]  Rainer Goebel,et al.  Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns , 2008, NeuroImage.

[43]  Rabab M. Ramadan,et al.  FACE RECOGNITION USING PARTICLE SWARM OPTIMIZATION-BASED SELECTED FEATURES , 2009 .

[44]  S M Smith,et al.  Overview of fMRI analysis. , 2004, The British journal of radiology.

[45]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[46]  H. Hart,et al.  Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD) , 2012, Neuroscience & Biobehavioral Reviews.

[47]  Nikolaus Kriegeskorte,et al.  Comparison of multivariate classifiers and response normalizations for pattern-information fMRI , 2010, NeuroImage.

[48]  Jonathan D. Power,et al.  Prediction of Individual Brain Maturity Using fMRI , 2010, Science.

[49]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[50]  Jing Zhao,et al.  Depression recognition using resting-state and event-related fMRI signals. , 2012, Magnetic resonance imaging.

[51]  Robert T. Schultz,et al.  Multi-voxel pattern analysis of fMRI data predicts clinical symptom severity , 2011, NeuroImage.

[52]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[53]  Xiuping Jia,et al.  Feature interaction in subspace clustering using the Choquet integral , 2012, Pattern Recognit..