A Law of the Logarithm for Kernel Quantile Density Estimators
暂无分享,去创建一个
[1] P. Major,et al. Strong Embedding of the Estimator of the Distribution Function under Random Censorship , 1988 .
[2] P. Billingsley,et al. Probability and Measure , 1980 .
[3] Michael Falk,et al. On the estimation of the quantile density function , 1986 .
[4] K. Singh,et al. The product-limit estimator and the bootstrap: Some asymptotic representations , 1986 .
[5] E. Kaplan,et al. Nonparametric Estimation from Incomplete Observations , 1958 .
[6] H. Müller,et al. Estimating regression functions and their derivatives by the kernel method , 1984 .
[7] Shie-Shien Yang. A Smooth Nonparametric Estimator of a Quantile Function , 1985 .
[8] A. Földes,et al. A LIL type result for the product limit estimator , 1981 .
[9] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[10] James Stephen Marron,et al. Kernel Quantile Estimators , 1990 .
[11] E. Parzen. Nonparametric Statistical Data Modeling , 1979 .
[12] W. Stute. A Law of the Logarithm for Kernel Density Estimators , 1982 .
[13] W. J. Padgett. A Kernel-Type Estimator of a Quantile Function from Right-Censored Data , 1986 .
[14] Winfried Stute,et al. THE OSCILLATION BEHAVIOR OF EMPIRICAL PROCESSES , 1982 .