Global Variability of Density Contrast Across the 660‐km Discontinuity

This study investigates lateral variations in density contrast across the 660‐km discontinuity, which is critical for understanding mantle convection and composition. We produce a global map of density jump, with values ranging from 3.8% to 9.3%, at the mineralogical phase boundary by applying inversions of amplitude variations with offset to underside S reflections. Our observations reveal a global average velocity jump of 4.1% and a density jump of 5.3%, favoring a pyrolitic bulk composition. Near major subduction zones, most notably the western Pacific and South America, we identify reduced density jumps in regions of depressed 660‐km discontinuity, consistent with basalt fractions greater than 30% in a mechanically mixed mantle. The causal association between density jump and compositional changes is further supported by a moderate correlation between lateral variations in density jump and those of water content anomalies.

[1]  J. Afonso,et al.  Basaltic reservoirs in the Earth’s mantle transition zone , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Giardini,et al.  Evidence for basalt enrichment in the mantle transition zone from inversion of triplicated P- and S-waveforms , 2022, Earth and Planetary Science Letters.

[3]  J. Afonso,et al.  A poorly mixed mantle transition zone and its thermal state inferred from seismic waves , 2021, Nature Geoscience.

[4]  S. Karato,et al.  Behavior and properties of water in silicate melts under deep mantle conditions , 2021, Scientific Reports.

[5]  B. Romanowicz,et al.  Constraining Jumps in Density and Elastic Properties at the 660 km Discontinuity Using Normal Mode Data via the Backus‐Gilbert Method , 2020, Geophysical Research Letters.

[6]  P. Shearer,et al.  Global variations of Earth's 520- and 560-km discontinuities , 2020 .

[7]  N. Schmerr,et al.  Constraints on Seismic Anisotropy in the Mantle Transition Zone From Long‐Period SS Precursors , 2019, Journal of Geophysical Research: Solid Earth.

[8]  M. Hearne,et al.  Slab2, a comprehensive subduction zone geometry model , 2018, Science.

[9]  S. Lee,et al.  HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone , 2018, Geochemistry, Geophysics, Geosystems.

[10]  M. D. de Hoop,et al.  Compositional heterogeneity near the base of the mantle transition zone beneath Hawaii , 2018, Nature Communications.

[11]  J. Tromp,et al.  Tidal tomography constrains Earth’s deep-mantle buoyancy , 2017, Nature.

[12]  Paula Koelemeijer,et al.  Density structure of Earth's lowermost mantle from Stoneley mode splitting observations , 2017, Nature Communications.

[13]  G. Ekström,et al.  The relationships between large‐scale variations in shear velocity, density, and compressional velocity in the Earth's mantle , 2016 .

[14]  A. Deuss,et al.  SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth's mantle , 2016 .

[15]  S. Lebedev,et al.  Global Heterogeneity of the Lithosphere and Underlying Mantle: A Seismological Appraisal Based on Multimode Surface-Wave Dispersion Analysis, Shear-Velocity Tomography, and Tectonic Regionalization , 2015 .

[16]  A. Deuss,et al.  SP 12 RTS : a degree-12 model of shear-and compressional-wave velocity for Earth ’ s mantle , 2015 .

[17]  J. Trampert,et al.  Seismic signature of a hydrous mantle transition zone , 2014 .

[18]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[19]  G. Masters,et al.  Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust , 2013 .

[20]  A. Dziewoński,et al.  Seismic tomography and geodynamics , 2013 .

[21]  Y. Fukao,et al.  Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity , 2012 .

[22]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 ( EGM 2008 ) , 2012 .

[23]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[24]  Lapo Boschi,et al.  GyPSuM: A joint tomographic model of mantle density and seismic wave speeds , 2010 .

[25]  H. Yurimoto,et al.  Water partitioning in the Earth's mantle , 2010 .

[26]  D. Fabre,et al.  Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS , 2009 .

[27]  A. Deuss,et al.  Global Observations of Mantle Discontinuities Using SS and PP Precursors , 2009 .

[28]  A. Curtis,et al.  Global variations of temperature and water content in the mantle transition zone from higher mode surface waves , 2009 .

[29]  Wenbo Xu,et al.  The effect of bulk composition and temperature on mantle seismic structure , 2008 .

[30]  A. Dziewoński,et al.  The global attenuation structure of the upper mantle , 2008 .

[31]  B. Tauzin,et al.  The mantle transition zone as seen by global Pds phases: No clear evidence for a thin transition zone beneath hotspots , 2008 .

[32]  E. Engdahl,et al.  A new global model for P wave speed variations in Earth's mantle , 2008 .

[33]  H. Iwamori Transportation of H2O beneath the Japan arcs and its implications for global water circulation , 2007 .

[34]  P. Shearer,et al.  Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms , 2006 .

[35]  N. Schmerr,et al.  Investigation of upper mantle discontinuity structure beneath the central Pacific using SS precursors , 2006 .

[36]  J. Woodhouse,et al.  Reflectivity of the 410‐km discontinuity from PP and SS precursors , 2005 .

[37]  Joseph S. Resovsky,et al.  Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle , 2004, Science.

[38]  J. Tromp,et al.  Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes , 2004 .

[39]  Thomas J. Owens,et al.  SOD; standing order for data , 2004 .

[40]  Jeannot Trampert,et al.  Using probabilistic seismic tomography to test mantle velocity–density relationships , 2003 .

[41]  P. Bird An updated digital model of plate boundaries , 2003 .

[42]  D. Bercovici,et al.  Whole-mantle convection and the transition-zone water filter , 2002, Nature.

[43]  Yu Jeffrey Gu,et al.  Global variability of transition zone thickness , 2002 .

[44]  C. Kuo,et al.  On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal‐mode data , 2002 .

[45]  J. Trampert,et al.  Global Azimuthal Anisotropy in the Transition Zone , 2002, Science.

[46]  K. Aki,et al.  Quantitative Seismology, 2nd Ed. , 2002 .

[47]  A. Rüger Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic Media , 2002 .

[48]  Bijaya B. Karki,et al.  Origin of lateral variation of seismic wave velocities and density in the deep mantle , 2001 .

[49]  M. Matsui Density and bulk sound velocity jumps across the 660 km seismic discontinuity , 2001 .

[50]  R. Snieder,et al.  The relative density to shear velocity scaling in the uppermost mantle , 2001 .

[51]  H. Kawakatsu,et al.  Seismological in situ estimation of density jumps across the transition zone discontinuities beneath Japan , 2001 .

[52]  A. Dziewoński,et al.  Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities , 2001 .

[53]  B. Romanowicz Can we resolve 3D density heterogeneity in the lower mantle? , 2001 .

[54]  A. Forte,et al.  Geodynamic evidence for a chemically depleted continental tectosphere. , 2000, Science.

[55]  K. Creager,et al.  Local sharpness and shear wave speed jump across the 660‐km discontinuity , 2000 .

[56]  J. Montagner,et al.  Global‐scale analysis of the mantle Pds phases , 1999 .

[57]  Flanagan,et al.  Seismic Velocity and Density Jumps Across the 410- and 660-Kilometer Discontinuities. , 1999, Science.

[58]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[59]  A. Dziewoński,et al.  Global de-correlation of the topography of transition zone discontinuities , 1998 .

[60]  C. Sotin,et al.  Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity , 1998 .

[61]  P. Shearer,et al.  Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors , 1998 .

[62]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[63]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[64]  R. Kind,et al.  The Nature of the 660-Kilometer Upper-Mantle Seismic Discontinuity from Precursors to the PP Phase , 1996, Science.

[65]  P. Shearer Transition zone velocity gradients and the 520-km discontinuity , 1996 .

[66]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[67]  J. Mitrovica,et al.  Seismic-geodynamic determination of the origin of excess ellipticity of the core-mantle boundary , 1995 .

[68]  Wei-jia Su,et al.  Degree 12 model of shear velocity heterogeneity in the mantle , 1994 .

[69]  M. Richards,et al.  A geodynamic model of mantle density heterogeneity , 1993 .

[70]  P. Shearer,et al.  Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection , 1993, Nature.

[71]  Andrea Morelli,et al.  Body wave traveltimes and a spherically symmetric P- and S-wave velocity model , 1993 .

[72]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[73]  Y. Ricard,et al.  Inferring the viscosity and the 3-D density structure of the mantle from geoid, topography and plate velocities , 1991 .

[74]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[75]  D. L. Anderson,et al.  Constrained reference mantle model , 1989 .

[76]  R. Jeanloz,et al.  Density and composition of the lower mantle , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[77]  C. Frohlich,et al.  The Nature of Deep-Focus Earthquakes , 1989 .

[78]  A. E. Ringwood,et al.  Nature of the 650–km seismic discontinuity: implications for mantle dynamics and differentiation , 1988, Nature.

[79]  A. Dziewoński,et al.  The harmonic expansion approach to the retrieval of deep Earth structure , 1987 .

[80]  Robert W. Clayton,et al.  Lower mantle heterogeneity, dynamic topography and the geoid , 1985, Nature.

[81]  B. Hager,et al.  Geoid Anomalies in a Dynamic Earth , 1984 .

[82]  Raymond Jeanloz,et al.  Phase transitions and mantle discontinuities , 1983 .

[83]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[84]  Don L. Anderson,et al.  Chemical stratification of the mantle , 1979 .