Riparian vegetation mapping for hydraulic roughness estimation using very high resolution remote sensing data fusion.

For detailed hydraulic modeling, accurate spatial information of riparian vegetation patterns needs to be derived in automatic fashion. We propose a supervised classification for heterogeneous riparian corridors with a low number of spectrally separate classes using data fusion of a Quickbird image and LIDAR data. The approach considers nine land cover classes including three woody riparian species, brush, cultivated areas, grassland, urban infrastructures, bare soil and water. The classical "stacked vector" approach is adopted for data fusion, while the nonparametric weighted feature-extraction method and the pixel-oriented maximum likelihood algorithm are used for feature-reduction and classification purposes, respectively. We test the approach over a 14-km stretch of the Sieve River (Tuscany Region, Italy). A one-dimensional river modeling is applied over the study reach comparing the results of a classification-derived hydraulic roughness map and a traditional ground-based approach. Despite the complex study reach, the classification method produced encouraging accuracies (OKS=0.77) and represents a useful tool to delineate application domains of flow resistance models suited to different hydrodynamic patterns (e.g., stiff/flexible vegetation). Hydraulic modeling results showed that the remotely derived floodplain roughness parameterization captures the equivalent Manning coefficient over 20 test cross sections with uncertainty distributions described by low mean and standard deviation values.

[1]  V. T. Chow Open-channel hydraulics , 1959 .

[2]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[3]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[4]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[5]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[6]  S. Petryk,et al.  Analysis of Flow through Vegetation , 1975 .

[7]  John A. Roberson,et al.  A Theory of Flow Resistance for Vegetated Channels , 1976 .

[8]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[9]  E. Pasche,et al.  Overbank Flow with Vegetatively Roughened Flood Plains , 1985 .

[10]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[11]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[12]  Ken W. Dawbin,et al.  Large area crop classification in New South Wales, Australia, using Landsat data , 1988 .

[13]  Nicholas Kouwen,et al.  Field estimation of the biomechanical properties of grass , 1988 .

[14]  V. R. Schneider,et al.  GUIDE FOR SELECTING MANNING'S ROUGHNESS COEFFICIENTS FOR NATURAL CHANNELS AND FLOOD PLAINS , 1989 .

[15]  Didier Tanré,et al.  Atmospherically resistant vegetation index (ARVI) for EOS-MODIS , 1992, IEEE Trans. Geosci. Remote. Sens..

[16]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[18]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[19]  Bruce Abernethy,et al.  The Impact of Gully Networks on the Time-to-Peak and Size of Flood Hydrographs , 1996 .

[20]  S. Franklin,et al.  Aerial Image Texture Information in the Estimation of Northern Deciduous and Mixed Wood Forest Leaf Area Index (LAI) , 1998 .

[21]  Gary E. Freeman,et al.  Determination of Resistance Due to Shrubs and Woody Vegetation , 2000 .

[22]  T. Tsegaye,et al.  Incorporation of digital elevation models with Landsat-TM data to improve land cover classification accuracy , 2000 .

[23]  N. Kouwen,et al.  Friction Factors for Coniferous Trees along Rivers , 2000 .

[24]  John R. Krebs,et al.  Improving bird population models using airborne remote sensing , 2000 .

[25]  D. Mason,et al.  Image processing of airborne scanning laser altimetry data for improved river flood modelling , 2001 .

[26]  Pamela L. Nagler,et al.  Assessment of spectral vegetation indices for riparian vegetation in the Colorado River delta, Mexico , 2001 .

[27]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  Jeffrey R. Johnson,et al.  Evaluation of airborne image data for mapping riparian vegetation within the Grand Canyon , 2002 .

[29]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[30]  Russell G. Congalton,et al.  Evaluating remotely sensed techniques for mapping riparian vegetation , 2002 .

[31]  R. Dowling,et al.  Vegetation classification of the riparian zone along the Brisbane River, Queensland, Australia, using light detection and ranging (lidar) data and forward looking digital video , 2003 .

[32]  M. Rinaldi Recent channel adjustments in alluvial rivers of Tuscany, central Italy , 2003 .

[33]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[34]  W. W. Carson,et al.  Accuracy of a high-resolution lidar terrain model under a conifer forest canopy , 2003 .

[35]  H. Fill,et al.  Estimating Instantaneous Peak Flow from Mean Daily Flow Data , 2003 .

[36]  Martin Charlton,et al.  Application of airborne LiDAR in river environments: the River Coquet, Northumberland, UK , 2003 .

[37]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[38]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[39]  Stuart R. Phinn,et al.  Mapping indicators of riparian vegetation health using IKONOS and Landsat-7 ETM+ image data in Australian tropical savannas , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[40]  J. Järvelä Determination of flow resistance caused by non‐submerged woody vegetation , 2004 .

[41]  S. Popescu,et al.  Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height , 2004 .

[42]  Bor-Chen Kuo,et al.  Nonparametric weighted feature extraction for classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Stephen J. Walsh,et al.  Remote sensing of forested wetlands: application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA , 2001, Plant Ecology.

[44]  A. Huete,et al.  Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the Lower Colorado River , 2004 .

[45]  J. G. White,et al.  Aerial Color Infrared Photography for Determining Early In‐Season Nitrogen Requirements in Corn , 2005 .

[46]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[47]  Anne H. Schistad Solberg,et al.  A bayesian approach to classification of multiresolution remote sensing data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[48]  A. W. Western,et al.  An analysis of the influence of riparian vegetation on the propagation of flood waves , 2006, Environ. Model. Softw..

[49]  S. Phinn,et al.  Mapping structural parameters and species composition of riparian vegetation using IKONOS and landsat ETM+ data in australian tropical savannahs , 2006 .

[50]  Peter M. Atkinson,et al.  The use of remotely sensed land cover to derive floodplain friction coefficients for flood inundation modelling , 2007 .

[51]  Suzanne J.M.H. Hulscher,et al.  Analytical solution of the depth‐averaged flow velocity in case of submerged rigid cylindrical vegetation , 2007 .

[52]  Paul D. Bates,et al.  Use of fused airborne scanning laser altimetry and digital map data for urban flood modelling , 2007 .

[53]  N. Coops,et al.  Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification , 2007 .

[54]  E. Bork,et al.  Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis , 2007 .

[55]  V. Babovic,et al.  On inducing equations for vegetation resistance , 2007 .

[56]  Menno Straatsma,et al.  Extracting structural characteristics of herbaceous floodplain vegetation under leaf‐off conditions using airborne laser scanner data , 2007 .

[57]  J. Clevers,et al.  Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data , 2007 .

[58]  M. Straatsma Quantitative Mapping of Hydrodynamic Vegetation Density of Floodplain Forests Under Leaf-off Conditions Using Airborne Laser Scanning , 2008 .

[59]  S. Popescu,et al.  A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .

[60]  Christopher M. U. Neale,et al.  Detailed mapping of riparian vegetation in the middle Rio Grande River using high resolution multi-spectral airborne remote sensing , 2008 .

[61]  Martin J. Baptist,et al.  Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing , 2008 .

[62]  J. Brasington,et al.  Retrieval of vegetative fluid resistance terms for rigid stems using airborne lidar. , 2008 .

[63]  J. Brasington,et al.  Object-based land cover classification using airborne LiDAR , 2008 .

[64]  N. Chang,et al.  Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. , 2009, Journal of environmental management.