Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion
暂无分享,去创建一个
Erik M. Bollt | Rick Chartrand | Kevin R. Vixie | Selim Esedoglu | Pete Schultz | S. Esedoglu | R. Chartrand | E. Bollt | K. Vixie | Pete Schultz
[1] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[2] Tony F. Chan,et al. Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..
[3] Kellen Petersen August. Real Analysis , 2009 .
[4] B. Dacorogna. Introduction to the calculus of variations , 2004 .
[5] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[6] Hans Sagan,et al. Introduction to the Calculus of Variations. , 1969 .
[7] Tony F. Chan,et al. Variational PDE models and methods for image processing , 1999 .
[8] Yunmei Chen,et al. Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..
[9] Stacey Levine,et al. Image Restoration via Nonstandard Diffusion , 2004 .
[10] L. Evans. Measure theory and fine properties of functions , 1992 .
[11] G. B. Smith,et al. Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .
[12] M. Nikolova. An Algorithm for Total Variation Minimization and Applications , 2004 .
[13] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[14] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[15] Rachid Deriche,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004 .
[16] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[17] J. March. Introduction to the Calculus of Variations , 1999 .