Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion

We introduce variants of the variational image denoising method proposed by Blomgren et al. (In: Numerical Analysis 1999 (Dundee), pp. 43–67. Chapman & Hall, Boca Raton, FL, 2000), which interpolates between total-variation denoising and isotropic diffusion denoising. We study how parameter choices affect results and allow tuning between TV denoising and isotropic diffusion for respecting texture on one spatial scale while denoising features assumed to be noise on finer spatial scales. Furthermore, we prove existence and (where appropriate) uniqueness of minimizers. We consider both L2 and L1 data fidelity terms.

[1]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[2]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[3]  Kellen Petersen August Real Analysis , 2009 .

[4]  B. Dacorogna Introduction to the calculus of variations , 2004 .

[5]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[6]  Hans Sagan,et al.  Introduction to the Calculus of Variations. , 1969 .

[7]  Tony F. Chan,et al.  Variational PDE models and methods for image processing , 1999 .

[8]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[9]  Stacey Levine,et al.  Image Restoration via Nonstandard Diffusion , 2004 .

[10]  L. Evans Measure theory and fine properties of functions , 1992 .

[11]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[12]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[13]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[14]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[15]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004 .

[16]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  J. March Introduction to the Calculus of Variations , 1999 .