Action-Minimizing Periodic and Quasi-Periodic Solutions in the $n$-body Problem

Considering any set of n-positive masses, n ≥ 3, moving in R2 under Newtonian gravitation, we prove that action-minimizing solutions in the class of paths with rotational and reflection symmetries are collision-free. For an open set of masses, the periodic and quasi-periodic solutions we obtained contain and extend the classical Euler– Moulton relative equilibria. We also show several numerical results on these actionminimizing solutions. Using a natural topological classification for collision-free paths via their braid types in a rotating frame, these action-minimizing solutions change from trivial to non-trivial braids as we vary masses and other parameters.

[1]  Yu-Chu Lin,et al.  On Action-Minimizing Retrograde and Prograde Orbits of the Three-Body Problem , 2009 .

[2]  Kuo-Chang Chen Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses , 2008 .

[3]  A. Chenciner Symmetries and "simple" solutions of the classical n-body problem , 2006 .

[4]  Kuo-Chang Chen Variational methods on periodic and quasi-periodic solutions for the N-body problem , 2003, Ergodic Theory and Dynamical Systems.

[5]  Kuo-Chang Chen Binary Decompositions for Planar N-Body Problems and Symmetric Periodic Solutions , 2003 .

[6]  A. Chenciner Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry , 2003, math/0304449.

[7]  S. Terracini,et al.  On the existence of collisionless equivariant minimizers for the classical n-body problem , 2003, math-ph/0302022.

[8]  C. Marchal How the Method of Minimization of Action Avoids Singularities , 2002 .

[9]  Kuo-Chang Chen Action-Minimizing Orbits in the Parallelogram Four-Body Problem with Equal Masses , 2001 .

[10]  Andrea Venturelli Une caractérisation variationnelle des solutions de Lagrange du problème plan des trois corps , 2001 .

[11]  A. Chenciner,et al.  Minima de l'intgrale d'action et quilibres relatifs de n corps , 1998 .

[12]  Moore,et al.  Braids in classical dynamics. , 1993, Physical review letters.

[13]  Richard S. Palais,et al.  The principle of symmetric criticality , 1979 .

[14]  M. Hénon A family of periodic solutions of the planar three-body problem, and their stability , 1976 .

[15]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .

[16]  K. F. Sundman,et al.  Mémoire sur le problème des trois corps , 1913 .

[17]  Forest Ray Moulton,et al.  The Straight Line Solutions of the Problem of N Bodies , 1910 .

[18]  Andrea Venturelli Application de la minimisation de l'action au problème des N corps dans le plan et dans l'espace , 2002 .

[19]  Donald G. Saari,et al.  On the role and the properties ofn body central configurations , 1980 .