State-feedback and filtering problems using the generalized KYP lemma
暂无分享,去创建一个
Ricardo C. L. F. Oliveira | Pedro L. D. Peres | Mauricio C. de Oliveira | M. D. de Oliveira | P. Peres | Licio Romao | Licio B. R. R. Romao | R. Oliveira
[1] Ricardo C. L. F. Oliveira,et al. Robust state feedback LMI methods for continuous-time linear systems: Discussions, extensions and numerical comparisons , 2011, 2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD).
[2] Karolos M. Grigoriadis,et al. A unified algebraic approach to linear control design , 1998 .
[3] Ricardo C. L. F. Oliveira,et al. Robust H∞ filter design with past output measurements for uncertain discrete-time systems , 2016, Autom..
[4] Robert E. Skelton,et al. Stability tests for constrained linear systems , 2001 .
[5] A. Rantzer. On the Kalman-Yakubovich-Popov lemma , 1996 .
[6] S. Jin,et al. Robust H/sub /spl infin// filtering for polytopic uncertain systems via convex optimisation , 2001 .
[7] Ricardo C. L. F. Oliveira,et al. Robust non‐minimal order filter and smoother design for discrete‐time uncertain systems , 2017 .
[8] Raymond A. de Callafon,et al. An alternative Kalman-Yakubovich-Popov lemma and some extensions , 2009, Autom..
[9] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[10] Shinji Hara,et al. Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma , 2007 .
[11] Ricardo C. L. F. Oliveira,et al. Robust H2 and H∞ filter design for uncertain linear systems via LMIs and polynomial matrices , 2011, Signal Process..
[12] J. Geromel,et al. A new discrete-time robust stability condition , 1999 .
[13] T. Iwasaki,et al. Generalized S-procedure and finite frequency KYP lemma , 2000 .
[14] Goele Pipeleers,et al. Generalized KYP Lemma With Real Data , 2011, IEEE Transactions on Automatic Control.
[15] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[16] Shinji Hara,et al. Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.