Numerical stroboscopic averaging for ODEs and DAEs

The stroboscopic averaging method (SAM) is a technique for the integration of highly oscillatory differential systems dy/dt=f(y,t) with a single high frequency. The method may be seen as a purely numerical way of implementing the analytical technique of stroboscopic averaging which constructs an averaged differential system dY/dt=F(Y) whose solutions Y interpolate the sought highly oscillatory solutions y. SAM integrates numerically the averaged system without using the analytic expression of F; all information on F required by the algorithm is gathered on the fly by numerically integrating the originally given system in small time windows. SAM may be easily implemented in combination with standard software and may be applied with variable step-sizes. Furthermore it may also be used successfully to integrate oscillatory DAEs. The paper provides an analytic and experimental study of SAM and two related techniques: the LIPS algorithm of Kirchgraber and multirevolution methods. An error analysis is provided that indicates that the efficiency of all these techniques increases even further when combined with splitting integrators.

[1]  Manuel Calvo,et al.  Error growth in the numerical integration of periodic orbits , 2011, Math. Comput. Simul..

[2]  L. Petzold An Efficient Numerical Method for Highly Oscillatory Ordinary Differential Equations , 1978 .

[3]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[4]  Fernando Casas,et al.  Processing Symplectic Methods for Near-Integrable Hamiltonian Systems , 2000 .

[5]  B. Cano,et al.  Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems , 1998 .

[6]  J. M. Sanz-Serna,et al.  Modulated Fourier expansions and heterogeneous multiscale methods , 2009 .

[7]  李幼升,et al.  Ph , 1989 .

[8]  Manuel Calvo,et al.  Approximate compositions of a near identity map by multi-revolution Runge-Kutta methods , 2004, Numerische Mathematik.

[9]  Drivation de schmas numriques symplectiques pour des systmes hamiltoniens hautement oscillants , 2007 .

[10]  Björn Engquist,et al.  Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem , 2005 .

[11]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[12]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[13]  Fernando Casas,et al.  Composition Methods for Differential Equations with Processing , 2005, SIAM J. Sci. Comput..

[14]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[15]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[16]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[17]  U. Kirchgraber,et al.  An ODE-solver based on the method of averaging , 1988 .

[18]  Ch. Tsitouras,et al.  Optimized Runge-Kutta pairs for problems with oscillating solutions , 2002 .

[19]  B. Cano,et al.  Error Growth in the Numerical Integration of Periodic Orbits, with Application to Hamiltonian and Reversible Systems , 1997 .

[20]  Manuel Calvo,et al.  Structure preservation of exponentially fitted Runge-Kutta methods , 2008 .

[21]  Jerrold E. Marsden,et al.  Integration Algorithms and Classical Mechanics , 1996 .

[22]  Per Lötstedt,et al.  Multiscale Methods in Science and Engineering , 2005 .

[23]  Mari Paz Calvo,et al.  Instabilities and Inaccuracies in the Integration of Highly Oscillatory Problems , 2009, SIAM J. Sci. Comput..

[24]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[25]  J. M. Sanz-Serna,et al.  A Stroboscopic Numerical Method for Highly Oscillatory Problems , 2012 .

[26]  Zvi Artstein,et al.  Young Measure Approach to Computing Slowly Advancing Fast Oscillations , 2008, Multiscale Model. Simul..

[27]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[28]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[29]  E. Hairer,et al.  Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2 , 1993 .

[30]  Jesús María Sanz-Serna,et al.  Higher-Order Averaging, Formal Series and Numerical Integration I: B-series , 2010, Found. Comput. Math..

[31]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[32]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[33]  A. Murua Formal series and numerical integrators, part I: Systems of ODEs and symplectic integrators , 1999 .

[34]  J. M. Sanz-Serna,et al.  Heterogeneous Multiscale Methods for Mechanical Systems with Vibrations , 2010, SIAM J. Sci. Comput..

[35]  Xinyuan Wu,et al.  Trigonometrically-fitted ARKN methods for perturbed oscillators , 2008 .

[36]  J. M. Franco Runge-Kutta methods adapted to the numerical integration of oscillatory problems , 2004 .

[37]  Fernando Casas,et al.  Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.

[38]  Manuel Calvo,et al.  On explicit multi-revolution Runge–Kutta schemes , 2007, Adv. Comput. Math..

[39]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[40]  U. Kirchgraber A numerical scheme for problems in nonlinear oscillations , 1982 .

[41]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[42]  Jerrold E. Marsden,et al.  Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..

[43]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.