Numerical stroboscopic averaging for ODEs and DAEs
暂无分享,去创建一个
[1] Manuel Calvo,et al. Error growth in the numerical integration of periodic orbits , 2011, Math. Comput. Simul..
[2] L. Petzold. An Efficient Numerical Method for Highly Oscillatory Ordinary Differential Equations , 1978 .
[3] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[4] Fernando Casas,et al. Processing Symplectic Methods for Near-Integrable Hamiltonian Systems , 2000 .
[5] B. Cano,et al. Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems , 1998 .
[6] J. M. Sanz-Serna,et al. Modulated Fourier expansions and heterogeneous multiscale methods , 2009 .
[8] Manuel Calvo,et al. Approximate compositions of a near identity map by multi-revolution Runge-Kutta methods , 2004, Numerische Mathematik.
[9] Drivation de schmas numriques symplectiques pour des systmes hamiltoniens hautement oscillants , 2007 .
[10] Björn Engquist,et al. Multiple Time Scale Numerical Methods for the Inverted Pendulum Problem , 2005 .
[11] H. De Meyer,et al. Exponentially fitted Runge-Kutta methods , 2000 .
[12] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[13] Fernando Casas,et al. Composition Methods for Differential Equations with Processing , 2005, SIAM J. Sci. Comput..
[14] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[15] Ernst Hairer,et al. The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .
[16] Linda R. Petzold,et al. Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.
[17] U. Kirchgraber,et al. An ODE-solver based on the method of averaging , 1988 .
[18] Ch. Tsitouras,et al. Optimized Runge-Kutta pairs for problems with oscillating solutions , 2002 .
[19] B. Cano,et al. Error Growth in the Numerical Integration of Periodic Orbits, with Application to Hamiltonian and Reversible Systems , 1997 .
[20] Manuel Calvo,et al. Structure preservation of exponentially fitted Runge-Kutta methods , 2008 .
[21] Jerrold E. Marsden,et al. Integration Algorithms and Classical Mechanics , 1996 .
[22] Per Lötstedt,et al. Multiscale Methods in Science and Engineering , 2005 .
[23] Mari Paz Calvo,et al. Instabilities and Inaccuracies in the Integration of Highly Oscillatory Problems , 2009, SIAM J. Sci. Comput..
[24] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[25] J. M. Sanz-Serna,et al. A Stroboscopic Numerical Method for Highly Oscillatory Problems , 2012 .
[26] Zvi Artstein,et al. Young Measure Approach to Computing Slowly Advancing Fast Oscillations , 2008, Multiscale Model. Simul..
[27] C. W. Gear,et al. Automatic integration of Euler-Lagrange equations with constraints , 1985 .
[28] Björn Engquist,et al. Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..
[29] E. Hairer,et al. Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2 , 1993 .
[30] Jesús María Sanz-Serna,et al. Higher-Order Averaging, Formal Series and Numerical Integration I: B-series , 2010, Found. Comput. Math..
[31] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[32] E. Weinan. Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .
[33] A. Murua. Formal series and numerical integrators, part I: Systems of ODEs and symplectic integrators , 1999 .
[34] J. M. Sanz-Serna,et al. Heterogeneous Multiscale Methods for Mechanical Systems with Vibrations , 2010, SIAM J. Sci. Comput..
[35] Xinyuan Wu,et al. Trigonometrically-fitted ARKN methods for perturbed oscillators , 2008 .
[36] J. M. Franco. Runge-Kutta methods adapted to the numerical integration of oscillatory problems , 2004 .
[37] Fernando Casas,et al. Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.
[38] Manuel Calvo,et al. On explicit multi-revolution Runge–Kutta schemes , 2007, Adv. Comput. Math..
[39] Björn Engquist,et al. A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..
[40] U. Kirchgraber. A numerical scheme for problems in nonlinear oscillations , 1982 .
[41] C. W. Gear,et al. Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .
[42] Jerrold E. Marsden,et al. Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..
[43] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.