Implicit Multiderivative Collocation Solvers for Linear Partial Differential Equations with Discontinuous Galerkin Spatial Discretizations

In this work, we construct novel discretizations for the unsteady convection–diffusion equation. Our discretization relies on multiderivative time integrators together with a novel discretization that reduces the total number of unkowns for the solver. These type of temporal discretizations come from an umbrella class of methods that include Lax–Wendroff (Taylor) as well as Runge–Kutta methods as special cases. We include two-point collocation methods with multiple time derivatives as well as a sixth-order fully implicit collocation method that only requires a total of three stages. Numerical results for a number of sample linear problems indicate the expected order of accuracy and indicate we can take arbitrarily large time steps.

[1]  Spencer J. Sherwin,et al.  A generic framework for time-stepping partial differential equations (PDEs): general linear methods, object-oriented implementation and application to fluid problems , 2011 .

[2]  Karline Soetaert,et al.  Solving Ordinary Differential Equations in R , 2012 .

[3]  Karen D. Rappaport S. KOVALEVSKY: A MATHEMATICAL LESSON , 1981 .

[4]  Jiequan Li,et al.  A Two-Stage Fourth Order Time-Accurate Discretization for Lax-Wendroff Type Flow Solvers I. Hyperbolic Conservation Laws , 2015, SIAM J. Sci. Comput..

[5]  Alexander Jaust,et al.  Implicit Multistage Two-Derivative Discontinuous Galerkin Schemes for Viscous Conservation Laws , 2015, J. Sci. Comput..

[6]  XuKun,et al.  An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and NavierStokes equations , 2016 .

[7]  David C. Seal,et al.  Positivity-Preserving Discontinuous Galerkin Methods with Lax–Wendroff Time Discretizations , 2016, Journal of Scientific Computing.

[8]  Antonio Baeza,et al.  An Approximate Lax–Wendroff-Type Procedure for High Order Accurate Schemes for Hyperbolic Conservation Laws , 2017, J. Sci. Comput..

[9]  GottliebSigal,et al.  Explicit Strong Stability Preserving Multistage Two-Derivative Time-Stepping Schemes , 2016 .

[10]  A. H. Al-Rabeh,et al.  Embedded dirk methods for the numerical integration of stiff systems of odes , 1987 .

[11]  Kun Xu,et al.  An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations , 2016, J. Comput. Phys..

[12]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[13]  E. Gekeler,et al.  On the order conditions of Runge-Kutta methods with higher derivatives , 1986 .

[14]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[15]  Chi-Wang Shu,et al.  Finite Difference WENO Schemes with Lax-Wendroff-Type Time Discretizations , 2002, SIAM J. Sci. Comput..

[16]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[17]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[19]  B. L. Ehle A-Stable Methods and Padé Approximations to the Exponential , 1973 .

[20]  Wei Guo,et al.  A New Lax–Wendroff Discontinuous Galerkin Method with Superconvergence , 2015, J. Sci. Comput..

[21]  Andrew J. Christlieb,et al.  High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws , 2013, J. Sci. Comput..

[22]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[23]  J. R. Cash,et al.  Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .

[24]  Rolf Jeltsch,et al.  A necessary condition for $A$-stability of multistep multiderivative methods , 1976 .

[25]  Ernst Hairer,et al.  Multistep-multistage-multiderivative methods for ordinary differential equations , 1973, Computing.

[26]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[27]  D. D. Stancu,et al.  Quadrature Formulas with Multiple Gaussian Nodes , 1965 .

[28]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  A. Meir,et al.  An Extension of Obreshkov’s Formula , 1968 .

[30]  Zhengfu Xu,et al.  An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method for the Compressible Euler Equations , 2014, J. Sci. Comput..

[31]  John C. Butcher,et al.  On the Convergence of Numerical Solutions to Ordinary Differential Equations , 1966 .

[32]  Dinshaw S. Balsara,et al.  A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector , 2016, J. Comput. Phys..

[33]  Shixiao Wang,et al.  Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach , 2014, Numerical Algorithms.

[34]  W. H. Enright,et al.  Second Derivative Multistep Methods for Stiff Ordinary Differential Equations , 1974 .

[35]  I. J. Schoenberg On Hermite-Birkhoff interpolation☆ , 1966 .

[36]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[37]  E. Gekeler,et al.  On implicit Runge-Kutta methods with higher derivatives , 1988 .

[38]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[39]  Endre Süli,et al.  hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems , 2001, SIAM J. Sci. Comput..

[40]  Xiao Feng,et al.  A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations , 2015, J. Comput. Phys..

[41]  J. S. Rosen Numerical solution of differential equations using Obrechkoff corrector formulas , 1969 .

[42]  D. G. Yakubu,et al.  Implicit two-derivative Runge–Kutta collocation methods for systems of initial value problems , 2015 .

[43]  Abraham OCHOCHE,et al.  General Linear Methods , 2006 .

[44]  Zachary Grant,et al.  Explicit Strong Stability Preserving Multistage Two-Derivative Time-Stepping Schemes , 2015, J. Sci. Comput..

[45]  Yan Jiang,et al.  An Alternative Formulation of Finite Difference Weighted ENO Schemes with Lax-Wendroff Time Discretization for Conservation Laws , 2013, SIAM J. Sci. Comput..

[46]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[47]  Y. Genin,et al.  An algebraic approach toA-stable linear multistep-multiderivative integration formulas , 1974 .

[48]  Byron L. Ehle,et al.  High order a-stable methods for the numerical solution of systems of D.E.'s , 1968 .

[49]  G. Mühlbach,et al.  An algorithmic approach to Hermite-Birkhoff-interpolation , 1981 .

[50]  Michael Dumbser,et al.  The discontinuous Galerkin method with Lax-Wendroff type time discretizations , 2005 .

[51]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[52]  Gerhard Wanner,et al.  On Turan type implicit Runge-Kutta methods , 1972, Computing.

[53]  Michael Dumbser,et al.  Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting , 2014, 1412.0081.

[54]  David C. Seal,et al.  The Picard Integral Formulation of Weighted Essentially Nonoscillatory Schemes , 2014, SIAM J. Numer. Anal..

[55]  Kun Xu,et al.  A Few Benchmark Test Cases for Higher-order Euler Solvers , 2016, 1609.04491.