Signature morpho-electric, transcriptomic, and dendritic properties of extratelencephalic-projecting human layer 5 neocortical pyramidal neurons

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The highly distinctive morpho-electric properties of these neurons have mainly been described in rodents, where ET neurons can be labeled by retrograde tracers or transgenic lines. Similar labeling strategies are not possible in the human neocortex, rendering the translational relevance of findings in rodents unclear. We leveraged the recent discovery of a transcriptomically-defined L5 ET neuron type to study the properties of human L5 ET neurons in neocortical brain slices derived from neurosurgeries. Patch-seq recordings, where transcriptome, physiology and morphology are assayed from the same cell, revealed many conserved morpho-electric properties of human and rodent L5 ET neurons. Divergent properties were also apparent but were often smaller than differences between cell types within these two species. These data suggest a conserved function of L5 ET neurons in the neocortical hierarchy, but also highlight marked phenotypic divergence possibly related to functional specialization of human neocortex.

[1]  R. Empson,et al.  Diversity of layer 5 projection neurons in the mouse motor cortex , 2013, Front. Cell. Neurosci..

[2]  W. Armstrong,et al.  Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca²⁺ dependence and differential modulation by norepinephrine. , 2015, Journal of neurophysiology.

[3]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[4]  J. Trimmer,et al.  Distinct Cell- and Layer-Specific Expression Patterns and Independent Regulation of Kv2 Channel Subtypes in Cortical Pyramidal Neurons , 2015, The Journal of Neuroscience.

[5]  S. Mcconnell,et al.  Faculty Opinions recommendation of Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. , 2005 .

[6]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[7]  D. Johnston,et al.  Cell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome1,2,3 , 2015, eNeuro.

[8]  Guy Eyal,et al.  Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex , 2015, Cerebral cortex.

[9]  G. Tang,et al.  Indian Hedgehog: A Mechanotransduction Mediator in Condylar Cartilage , 2004, Journal of dental research.

[10]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[11]  Yasuo Kawaguchi,et al.  Firing-Pattern-Dependent Specificity of Cortical Excitatory Feed-Forward Subnetworks , 2008, The Journal of Neuroscience.

[12]  Allan R. Jones,et al.  Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures , 2012, Cell.

[13]  Brian R. Lee,et al.  Human cortical expansion involves diversification and specialization of supragranular intratelencephalic-projecting neurons , 2020, bioRxiv.

[14]  Idan Segev,et al.  Comprehensive Morpho-Electrotonic Analysis Shows 2 Distinct Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex , 2017, Cerebral cortex.

[15]  Guy Eyal,et al.  Unique membrane properties and enhanced signal processing in human neocortical neurons , 2016, eLife.

[16]  D. Johnston,et al.  Systems-based analysis of dendritic nonlinearities reveals temporal feature extraction in mouse L5 cortical neurons. , 2017, Journal of Neurophysiology.

[17]  G. Feng,et al.  Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. , 2014, Methods in molecular biology.

[18]  Y. Isomura,et al.  In Vivo Spiking Dynamics of Intra- and Extratelencephalic Projection Neurons in Rat Motor Cortex , 2018, Cerebral cortex.

[19]  Variation in form of the pyramidal tract and its relationship to digital dexterity. , 1975, Brain, behavior and evolution.

[20]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[21]  R. Empson,et al.  Diversity of layer 5 projection neurons in the mouse motor cortex , 2013, Front. Cell. Neurosci..

[22]  Y. Kawaguchi Pyramidal Cell Subtypes and Their Synaptic Connections in Layer 5 of Rat Frontal Cortex , 2017, Cerebral cortex.

[23]  Joseph J. Marlin,et al.  Cell-Type Specificity of Callosally Evoked Excitation and Feedforward Inhibition in the Prefrontal Cortex , 2018, Cell reports.

[24]  R. Foehring,et al.  Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex. , 2016, Journal of neurophysiology.

[25]  Brian R. Lee,et al.  Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons , 2020, bioRxiv.

[26]  Taro Kiritani,et al.  Corticospinal-specific HCN expression in mouse motor cortex: I(h)-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. , 2011, Journal of neurophysiology.

[27]  Patrick R Hof,et al.  Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals , 2018, The Journal of comparative neurology.

[28]  Hongkui Zeng,et al.  Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. , 2015, Cerebral cortex.

[29]  Charles R. Gerfen,et al.  Distinct descending motor cortex pathways and their roles in movement , 2017, Nature.

[30]  M. Santello,et al.  Dysfunction of Cortical Dendritic Integration in Neuropathic Pain Reversed by Serotoninergic Neuromodulation , 2015, Neuron.

[31]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[32]  D. Johnston,et al.  The h Channel Mediates Location Dependence and Plasticity of Intrinsic Phase Response in Rat Hippocampal Neurons , 2008, The Journal of Neuroscience.

[33]  E. Callaway,et al.  Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function , 2015, Neuron.

[34]  Garreck H. Lenz,et al.  Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling , 2019 .

[35]  Garreck H. Lenz,et al.  Prospective, brain-wide labeling of neuronal subclasses with enhancer-driven AAVs , 2019, bioRxiv.

[36]  A. Juavinett,et al.  Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences , 2018, The Journal of Neuroscience.

[37]  Marcel Oberlaender,et al.  Relationships between structure, in vivo function and long-range axonal target of cortical pyramidal tract neurons , 2017, Nature Communications.

[38]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[39]  Trygve E Bakken,et al.  Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons , 2019, Nature Communications.

[40]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[41]  L. Fletcher,et al.  Neocortical Topology Governs the Dendritic Integrative Capacity of Layer 5 Pyramidal Neurons , 2019, Neuron.

[42]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[43]  G. Stuart,et al.  Action Potential Initiation and Propagation in Layer 5 Pyramidal Neurons of the Rat Prefrontal Cortex: Absence of Dopamine Modulation , 2003, The Journal of Neuroscience.

[44]  Christof Koch,et al.  Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse , 2020, bioRxiv.

[45]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[46]  Jon H. Kaas,et al.  Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass , 2015, Brain, Behavior and Evolution.

[47]  Trygve E Bakken,et al.  h-Channels Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex , 2018, Neuron.

[48]  J. C. Lodder,et al.  Author response: Unique membrane properties and enhanced signal processing in human neocortical neurons , 2016 .

[49]  D. Johnston,et al.  Temporal synchrony and gamma to theta power conversion in the dendrites of CA1 pyramidal neurons , 2013, Nature Neuroscience.

[50]  Wenjun Gao,et al.  Target‐specific differences in somatodendritic morphology of layer V pyramidal neurons in rat motor cortex , 2004, The Journal of comparative neurology.

[51]  Trygve E Bakken,et al.  Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons , 2019, bioRxiv.

[52]  Hongkui Zeng,et al.  Phenotypic variation within and across transcriptomic cell types in mouse motor cortex , 2020, bioRxiv.

[53]  J. Ainge,et al.  Ontogeny of neural circuits underlying spatial memory in the rat , 2012, Front. Neural Circuits.

[54]  Christof Koch,et al.  Physiology of Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex: Coincidence Detection through Bursting , 2015, PLoS Comput. Biol..

[55]  Michele Migliore,et al.  Intrinsic electrophysiology of mouse corticospinal neurons: a class-specific triad of spike-related properties. , 2013, Cerebral cortex.

[56]  Soyoung Q. Park,et al.  The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans , 2010, Brain Structure and Function.

[57]  R. Miura,et al.  Subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[58]  Zengcai V. Guo,et al.  A motor cortex circuit for motor planning and movement , 2015, Nature.

[59]  Brian R. Lee,et al.  Toward an Integrated Classification of Cell Types: Morphoelectric and Transcriptomic Characterization of Individual GABAergic Cortical Neurons , 2020 .

[60]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[61]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[62]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[63]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[64]  Mark T. Harnett,et al.  Enhanced Dendritic Compartmentalization in Human Cortical Neurons , 2018, Cell.

[65]  R. Chitwood,et al.  Dendritic Generation of mGluR-Mediated Slow Afterdepolarization in Layer 5 Neurons of Prefrontal Cortex , 2013, The Journal of Neuroscience.

[66]  Daniel Johnston,et al.  Projection-Specific Neuromodulation of Medial Prefrontal Cortex Neurons , 2010, The Journal of Neuroscience.

[67]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[68]  Daniel Avesar,et al.  Selective serotonergic excitation of callosal projection neurons , 2012, Front. Neural Circuits.

[69]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[70]  D. Johnston,et al.  Subcircuit-specific neuromodulation in the prefrontal cortex , 2014, Front. Neural Circuits.

[71]  M. Larkum,et al.  Dendritic action potentials and computation in human layer 2/3 cortical neurons , 2020, Science.

[72]  D. Johnston,et al.  Temporal Dynamics of L5 Dendrites in Medial Prefrontal Cortex Regulate Integration Versus Coincidence Detection of Afferent Inputs , 2015, The Journal of Neuroscience.

[73]  Felipe A. Veloso,et al.  The Specification of Cortical Subcerebral Projection Neurons Depends on the Direct Repression of TBR1 by CTIP1/BCL11a , 2015, The Journal of Neuroscience.

[74]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[75]  Anushya Muruganujan,et al.  PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools , 2018, Nucleic Acids Res..

[76]  Shreejoy J. Tripathy,et al.  Assessing Transcriptome Quality in Patch-Seq Datasets , 2018, Front. Mol. Neurosci..

[77]  Mark T. Harnett,et al.  Potassium Channels Control the Interaction between Active Dendritic Integration Compartments in Layer 5 Cortical Pyramidal Neurons , 2013, Neuron.

[78]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[79]  S. Nelson,et al.  Region-Specific Spike-Frequency Acceleration in Layer 5 Pyramidal Neurons Mediated by Kv1 Subunits , 2008, The Journal of Neuroscience.

[80]  Brian R. Lee,et al.  Classification of electrophysiological and morphological neuron types in the mouse visual cortex , 2019, Nature Neuroscience.