Infect Recognize Destroy

This review describes a body of work on computational immune systems that behave analogously to the natural immune system. These artificial immune systems (AIS) simulate the behavior of the natural immune system and in some cases have been used to solve practical engineering problems such as computer security. AIS have several strengths that can complement wet lab immunology. It is easier to conduct simulation experiments and to vary experimental conditions, for example, to rule out hypotheses; it is easier to isolate a single mechanism to test hypotheses about how it functions; agent-based models of the immune system can integrate data from several different experiments into a single in silico experimental system.

[1]  Essential Immunology , 1981 .

[2]  Mark Burgess,et al.  Automated system administration with feedback regulation , 1998, Softw. Pract. Exp..

[3]  A S Perelson,et al.  Using lazy evaluation to simulate realistic-size repertoires in models of the immune system , 1997, Bulletin of mathematical biology.

[4]  Peter Ross,et al.  An Immune System Approach to Scheduling in Changing Environments , 1999, GECCO.

[5]  Michele Bezzi,et al.  The transition between immune and disease states in a cellular automaton model of clonal immune response , 1997 .

[6]  Robbert van Renesse,et al.  Amoeba A Distributed Operating System for the 1990 s Sape , 1990 .

[7]  Santosh K. Shrivastava,et al.  The Design and Implementation of Arjuna , 1995, Comput. Syst..

[8]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[9]  G. Weisbuch,et al.  Immunology for physicists , 1997 .

[10]  P E Seiden,et al.  A model for simulating cognate recognition and response in the immune system. , 1992, Journal of theoretical biology.

[11]  P. Norman,et al.  Immunobiology: The immune system in health and disease , 1995 .

[12]  P E Seiden,et al.  A computer model of cellular interactions in the immune system. , 1992, Immunology today.

[13]  Ken Arnold,et al.  The Java Programming Language , 1996 .

[14]  F T Vertosick,et al.  Immune network theory: a role for parallel distributed processing? , 1989, Immunology.

[15]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[16]  Dorothy E. Denning,et al.  An Intrusion-Detection Model , 1987, IEEE Transactions on Software Engineering.

[17]  G. Oster,et al.  Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. , 1979, Journal of theoretical biology.

[18]  G L Asherson,et al.  The control of the immune response. , 1975, Annals of allergy.

[19]  Paul Anderson,et al.  Towards a High-Level Machine Configuration System , 1994, LISA.

[20]  Robbert van Renesse,et al.  Experiences with the Amoeba distributed operating system , 1990, CACM.

[21]  Gary B. Lamont,et al.  A distributed architecture for a self-adaptive computer virus immune system , 1999 .

[22]  Mike Fisk,et al.  Automating the Administration of Heterogeneous LANs , 1996, LISA.

[23]  C. Janeway Immunobiology: The Immune System in Health and Disease , 1996 .

[24]  Mark Burgess,et al.  Distributed Resource Administration Using Cfengine , 1997, Softw. Pract. Exp..

[25]  Vern Paxson,et al.  Bro: a system for detecting network intruders in real-time , 1998, Comput. Networks.

[26]  Steve R. White,et al.  Computers and epidemiology , 1993, IEEE Spectrum.

[27]  Yoshiki Uchikawa,et al.  Gait control of hexapod walking robots using mutual-coupled immune networks , 1995, Adv. Robotics.

[28]  Sunil Kittur,et al.  Fault Tolerance in a Distributed CHORUS/MiX System , 1996, USENIX Annual Technical Conference.

[29]  Alan S. Perelson,et al.  Using Genetic Algorithms to Explore Pattern Recognition in the Immune System , 1993, Evolutionary Computation.

[30]  Ken Thompson,et al.  Plan 9 from Bell Labs , 1995 .

[31]  Franco Celada,et al.  Modeling immune cognition , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[32]  A. Perelson,et al.  HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time , 1996, Science.

[33]  Alan S. Perelson,et al.  Self-nonself discrimination in a computer , 1994, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy.

[34]  L. Pauling,et al.  THE PRODUCTION OF ANTIBODIES IN VITRO. , 1942, Science.

[35]  Mark Burgess,et al.  Adaptive Locks For Frequently Scheduled Tasks With Unpredictable Runtimes , 1997, LISA.

[36]  Walter F. Tichy,et al.  Rcs — a system for version control , 1985, Softw. Pract. Exp..

[37]  John Brunner,et al.  Shockwave Rider , 1975 .

[38]  Stephanie Forrest,et al.  A sense of self for Unix processes , 1996, Proceedings 1996 IEEE Symposium on Security and Privacy.

[39]  제임스 스코트 크라우,et al.  Production of Antibodies , 1942, Nature.

[40]  L. Segel,et al.  On the role of feedback in promoting conflicting goals of the adaptive immune system. , 1999, Journal of immunology.

[41]  Hugues Bersini,et al.  Hints for Adaptive Problem Solving Gleaned from Immune Networks , 1990, PPSN.

[42]  Trent Jaeger,et al.  Operating System Protection for Fine-Grained Programs , 1998, USENIX Security Symposium.

[43]  Victoria Ungureanu,et al.  Unified Support for Heterogeneous Security Policies in Distributed Systems , 1998, USENIX Security Symposium.

[44]  Paulien Hogeweg,et al.  Randomness and pattern scale in the immune network , 2018 .

[45]  Jay Lepreau,et al.  Computer System Performance Problem Detection Using Time Series Model , 1993, USENIX Summer.

[46]  Mark Burgess,et al.  A Site Configuration Engine , 1995, Comput. Syst..

[47]  Martin Meier-Schellersheim,et al.  SIMMUNE, a tool for simulating and analyzing immune system behavior , 1999, ArXiv.

[48]  Fred Cohen,et al.  Computer viruses—theory and experiments , 1990 .

[49]  A S Perelson,et al.  A quantitative theory of affinity-driven T cell repertoire selection. , 1999, Journal of theoretical biology.

[50]  A H Rowberg,et al.  Influenza virus population dynamics in the respiratory tract of experimentally infected mice , 1976, Infection and immunity.

[51]  P E Seiden,et al.  A solution to the rheumatoid factor paradox: pathologic rheumatoid factors can be tolerized by competition with natural rheumatoid factors. , 1997, Journal of immunology.

[52]  Carla Marceau,et al.  Intrusion detection for distributed applications , 1999, CACM.

[53]  H. Abbass,et al.  aiNet : An Artificial Immune Network for Data Analysis , 2022 .

[54]  Wietse Z. Venema,et al.  Murphy's Law and Computer Security , 1996, USENIX Security Symposium.

[55]  Karl N. Levitt,et al.  Automated detection of vulnerabilities in privileged programs by execution monitoring , 1994, Tenth Annual Computer Security Applications Conference.

[56]  Ira S. Winkler,et al.  Information Security Technology? Don't Rely on It. A Case Study in Social Engineering , 1995, USENIX Security Symposium.

[57]  G Köhler,et al.  Frequency of precursor cells against the enzyme β‐galactosidase An estimate of the BALB/c strain antibody repertoire , 1976, European journal of immunology.

[58]  M Kaufman,et al.  Towards a logical analysis of the immune response. , 1985, Journal of theoretical biology.

[59]  Stephanie Forrest,et al.  Intrusion Detection Using Sequences of System Calls , 1998, J. Comput. Secur..

[60]  N K Jerne,et al.  Towards a network theory of the immune system. , 1973, Annales d'immunologie.

[61]  Alan S. Perelson,et al.  The Evolution of Emergent Organization in Immune System Gene Libraries , 1995, ICGA.

[62]  Eugene H. Spafford,et al.  Computer Viruses--A Form of Artificial Life? , 1990 .

[63]  A S Perelson,et al.  Explaining high alloreactivity as a quantitative consequence of affinity-driven thymocyte selection. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Todd L. Heberlein,et al.  Network intrusion detection , 1994, IEEE Network.

[65]  Rémy Evard,et al.  An Analysis of UNIX System Configuration , 1997, LISA.

[66]  P. Matzinger Tolerance, danger, and the extended family. , 1994, Annual review of immunology.

[67]  Stephen E. Hansen,et al.  Automated System Monitoring and Notification with Swatch , 1993, LISA.

[68]  Dietrich Stauffer,et al.  High-dimensional simulation of the shape-space model for the immune system , 1992 .

[69]  G. Bocharov,et al.  Mathematical model of antiviral immune response. III. Influenza A virus infection. , 1994, Journal of theoretical biology.

[70]  A. Perelson,et al.  Predicting the size of the T-cell receptor and antibody combining region from consideration of efficient self-nonself discrimination. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Salvatore J. Stolfo,et al.  Data Mining Approaches for Intrusion Detection , 1998, USENIX Security Symposium.

[72]  L. Segel,et al.  Immunology Viewed as the Study of an Autonomous Decentralized System , 1998 .

[73]  William Hugh Murray,et al.  The application of epidemiology to computer viruses , 1988, Comput. Secur..

[74]  Robert Wahbe,et al.  Adaptable Binary Programs , 1995, USENIX.

[75]  Ward Rosenberry,et al.  Understanding DCE , 1992 .

[76]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[77]  Subinay Dasgupta Monte Carlo simulation of the shape space model of immunology , 1992 .

[78]  Marcus J. Ranum,et al.  Implementing a generalized tool for network monitoring , 1997, Inf. Secur. Tech. Rep..

[79]  Jeffrey O. Kephart,et al.  Biologically Inspired Defenses Against Computer Viruses , 1995, IJCAI.

[80]  A S Perelson,et al.  Variable efficacy of repeated annual influenza vaccination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Alan S. Perelson,et al.  Decay characteristics of HIV-1-infected compartments during combination therapy , 1997, Nature.

[82]  James S. Plank,et al.  A tutorial on Reed–Solomon coding for fault‐tolerance in RAID‐like systems , 1997, Softw. Pract. Exp..

[83]  Paul Helman,et al.  An immunological approach to change detection: algorithms, analysis and implications , 1996, Proceedings 1996 IEEE Symposium on Security and Privacy.

[84]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[85]  Stephanie Forrest,et al.  How the immune system generates diversity: pathogen space coverage with random and evolved antibody libraries , 1999 .

[86]  Jon Finke Automation of Site Configuration Management , 1997, LISA.

[87]  P. Marrack,et al.  T cell tolerance by clonal elimination in the thymus , 1987, Cell.

[88]  Dipankar Dasgupta,et al.  Novelty detection in time series data using ideas from immunology , 1996 .

[89]  Michael Carney,et al.  A Comparison of Methods for Implementing Adaptive Security Policies , 1998, USENIX Security Symposium.

[90]  Manuel Blum,et al.  Software reliability via run-time result-checking , 1997, JACM.

[91]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[92]  J. D. Tygar,et al.  Building blocks for atomicity in electronic commerce , 1996 .

[93]  John P. Rouillard,et al.  Config: A Mechanism for Installing and Tracking System Configurations , 1994, LISA.

[94]  David A. Wagner,et al.  A Secure Environment for Untrusted Helper Applications , 1996, USENIX Security Symposium.

[95]  A. Casrouge,et al.  A Direct Estimate of the Human αβ T Cell Receptor Diversity , 1999 .

[96]  Eugene H. Spafford,et al.  An analysis of the internet worm , 1989 .

[97]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[98]  Alan S. Perelson,et al.  Deriving Shape Space Parameters from Immunological Data for a Model of Cross-Reactive Memory , 1997 .

[99]  Hugues Bersini,et al.  Immune Network and Adaptive Control , 1991 .