Concentric-Flow Electrokinetic Injector Enables Serial Crystallography of Ribosome and Photosystem-II

We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

[1]  Garth J. Williams,et al.  Serial femtosecond X-ray diffraction of 30S ribosomal subunit microcrystals in liquid suspension at ambient temperature using an X-ray free-electron laser , 2013, Acta crystallographica. Section F, Structural biology and crystallization communications.

[2]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[3]  Nicholas K. Sauter,et al.  XFEL diffraction: developing processing methods to optimize data quality , 2015, Journal of synchrotron radiation.

[4]  Anna Marie Pyle,et al.  RCrane: semi-automated RNA model building , 2012, Acta crystallographica. Section D, Biological crystallography.

[5]  F. Murphy,et al.  Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. , 2010, RNA.

[6]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[7]  A. Zouni,et al.  Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. , 2005, Biochimica et biophysica acta.

[8]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[9]  Sébastien Boutet,et al.  Room temperature femtosecond X-ray diffraction of photosystem II microcrystals , 2012, Proceedings of the National Academy of Sciences.

[10]  Sébastien Boutet,et al.  The Coherent X-ray Imaging instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[11]  Anton Barty,et al.  Crystallographic data processing for free-electron laser sources , 2013, Acta crystallographica. Section D, Biological crystallography.

[12]  Yoshiki Tanaka,et al.  Grease matrix as a versatile carrier of proteins for serial crystallography , 2014, Nature Methods.

[13]  Garth J. Williams,et al.  Serial Femtosecond Crystallography of G Protein–Coupled Receptors , 2013, Science.

[14]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[15]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[16]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[17]  H. Noller,et al.  Molecular mechanics of 30S subunit head rotation , 2014, Proceedings of the National Academy of Sciences.

[18]  A. Zouni,et al.  Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures , 2015, Structural dynamics.

[19]  M. Hunter,et al.  SEM imaging of liquid jets. , 2009, Micron.

[20]  Kristiina Takkinen,et al.  Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. , 2008 .

[21]  G. Blaha,et al.  Temperature-dependent radiation sensitivity and order of 70S ribosome crystals. , 2014, Acta crystallographica. Section D, Biological crystallography.

[22]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[23]  Anton Barty,et al.  Fixed-target protein serial microcrystallography with an x-ray free electron laser , 2014, Scientific Reports.

[24]  Sébastien Boutet,et al.  Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature , 2013, Science.

[25]  Derek J. Wilson,et al.  A capillary mixer with adjustable reaction chamber volume for millisecond time-resolved studies by electrospray mass spectrometry. , 2003, Analytical chemistry.

[26]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[27]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[28]  Takashi Kameshima,et al.  Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. , 2014, The Review of scientific instruments.

[29]  H. Chapman,et al.  Femtosecond protein nanocrystallography-data analysis methods. , 2010, Optics express.

[30]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[31]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[32]  J. Doltsinis Structural dynamics , 1987 .

[33]  Sébastien Boutet,et al.  Nanoflow electrospinning serial femtosecond crystallography. , 2012, Acta crystallographica. Section D, Biological crystallography.

[34]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[35]  Takeshi Wada,et al.  Modified Uridines with C5-methylene Substituents at the First Position of the tRNA Anticodon Stabilize U·G Wobble Pairing during Decoding* , 2008, Journal of Biological Chemistry.

[36]  F. Murphy,et al.  A structural basis for streptomycin-induced misreading of the genetic code , 2012, Nature Communications.

[37]  Anton Barty,et al.  Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data , 2014, Journal of applied crystallography.

[38]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[39]  Sébastien Boutet,et al.  Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers , 2014, Nature Methods.

[40]  Anton Barty,et al.  Accurate determination of segmented X-ray detector geometry. , 2015, Optics express.

[41]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[42]  A. Meents,et al.  Native-like photosystem II superstructure at 2.44 Å resolution through detergent extraction from the protein crystal. , 2014, Structure.

[43]  J. Puglisi,et al.  Single-molecule analysis of translational dynamics. , 2012, Cold Spring Harbor perspectives in biology.

[44]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[45]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[46]  Nicholas K. Sauter,et al.  Taking Snapshots of Photosynthetic Water Oxidation Using Femtosecond X-ray Diffraction and Spectroscopy , 2014, Nature Communications.