Molecular and Nanoscale Computing and Technology

In this chapter, we have presented an overview of various nanoscale and molecular computing architectures. We have given a brief tutorial on various existing nanoscale and molecular devices. These include molecular switches, resonant tunnel diodes, tunnel diodes, single electron transistors, carbon nanotube field-effect transistors, quantum dots, and spin systems. We have next discussed a set of nanoscale computing modules, such as quantum and spin-based cellular logic arrays, and molecular-based cellular automata, all made from the switches presented here. These modules are an integral part of the hierarchical 3-D multiscale architecture presented. We have also showed a set of quantum and molecular self-assembled structures including molecular crossbars. The fabrication of these architectures currently faces a number of challenges, as discussed in this chapter. Nanoscale and molecular computing is a promising alternative to today’s CMOS technology but is in an infancy stage, with many interesting design issues yet to be studied and resolved.

[1]  K. Wang,et al.  A novel high speed, three element Si-based static random access memory (SRAM) cell , 1995, IEEE Electron Device Letters.

[2]  William J. Gallagher,et al.  Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited) , 1999 .

[3]  V. Roychowdhury,et al.  Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics , 1996 .

[4]  A. Ulman,et al.  Ultrathin organic films: From Langmuir-Blodgett to self assembly , 1991 .

[5]  P. L. McEuen,et al.  Electrical transport measurements on single-walled carbon nanotubes , 1999 .

[6]  Irena Kratochvilova,et al.  Template synthesis of metal nanowires containing monolayer molecular junctions. , 2002, Journal of the American Chemical Society.

[7]  John H. Reif,et al.  Alternative Computational Models: A Comparison of Biomolecular and Quantum Computation , 1998, FSTTCS.

[8]  Alan Seabaugh,et al.  Vertical integration of structured resonant tunneling diodes on InP for multi-valued memory applications , 1992, LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels.

[9]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[10]  Robert A Beckman,et al.  Self-assembled, deterministic carbon nanotube wiring networks. , 2002, Angewandte Chemie.

[11]  George Bourianoff,et al.  The Future of Nanocomputing , 2003, Computer.

[12]  S. Koester,et al.  Operation of a novel negative differential conductance transistor fabricated in a strained Si quantum well , 1997, IEEE Electron Device Letters.

[13]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[14]  Vwani P. Roychowdhury,et al.  Nanoelectronic Functional Devices , 1994 .

[15]  Tsuyoshi Yakihara,et al.  Monolithic sampling head IC , 1990 .

[16]  Leonard,et al.  Negative differential resistance in nanotube devices , 2000, Physical review letters.

[17]  Claudiu Muntele Molecular Random-Access Memory Cell Demonstrated , 2001 .

[18]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[19]  Y. Takahashi,et al.  Single-electron pass-transistor logic: operation of its elemental circuit , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[20]  John R. Tucker,et al.  Complementary digital logic based on the ``Coulomb blockade'' , 1992 .

[21]  Pinaki Mazumder,et al.  Resonant tunneling diodes: models and properties , 1998, Proc. IEEE.

[22]  Robert E. Jones,et al.  Ferroelectric non-volatile memories for low-voltage, low-power applications , 1995 .

[23]  J.P.A. van der Wagt,et al.  Tunneling-based SRAM , 1999, Proc. IEEE.

[24]  T. Itoh,et al.  Ultrahigh-speed resonant tunneling circuits , 1998, Proceedings. Second International Workshop on Physics and Modeling of Devices Based on Low-Dimensional Structures (Cat. No. 98EX199).

[25]  Vwani P. Roychowdhury,et al.  Metastable states and information propagation in a one-dimensional array of locally coupled bistable cells , 1999 .

[26]  Grzegorz Rozenberg,et al.  Automata, languages, development , 1976 .

[27]  J. Li,et al.  Molecular-scale rectifying diodes based on Y-junction carbon nanotubes , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[28]  H. Wong,et al.  Carbon nanotube field effect transistors for logic applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[29]  H. Namatsu,et al.  Si complementary single-electron inverter , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[30]  Mark A. Ratner,et al.  Molecular electronics , 2005 .

[31]  Bich-Yen Nguyen,et al.  Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates , 1999 .

[32]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[33]  Kazuo Yano,et al.  Single-electron memory for giga-to-tera bit storage , 1999, Proc. IEEE.

[34]  Hsian-Rong Tseng,et al.  Single-walled carbon nanotube based molecular switch tunnel junctions. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Tsui,et al.  Observation of intrinsic bistability in resonant tunneling structures. , 1987, Physical review letters.

[36]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[37]  A. Toriumi,et al.  Negative differential conductance in three‐terminal silicon tunneling device , 1996 .

[38]  Leo Esaki,et al.  Structures Grown by Molecular Beam Epitaxy , 1973 .

[39]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[40]  Vwani P. Roychowdhury,et al.  Computational Paradigms in Nanoelectronics: Quantum Coupled Single Electron Logic and Neuromorphic Networks , 1996 .

[41]  K. M. Horn,et al.  Electronic structure classifications using scanning tunneling microscopy conductance imaging , 1998 .

[42]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[43]  Alexander Khitun,et al.  Semiconductor tunneling structure with self-assembled quantum dots for multi-logic cellular automata module , 2003, Saratov Fall Meeting.

[44]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[45]  Krzysztof Kulakowski,et al.  New cellular automaton designed to simulate geometration in gel electrophoresis , 2002 .

[46]  Vwani P. Roychowdhury,et al.  Nanoelectronic architecture for Boolean logic , 1997, Proc. IEEE.

[47]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[48]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[49]  S.E. Lyshevski,et al.  MEMS and NEMS - systems, devices, and structures , 2004, IEEE Electrical Insulation Magazine.

[50]  Y. Lee,et al.  Room temperature operation of a quantum-dot flash memory , 1997, IEEE Electron Device Letters.

[51]  Cees Dekker,et al.  Logic circuits with carbon nanotubes , 2002 .

[52]  Yoshiyuki Kawazoe,et al.  Nonlinear Coherent Transport Through Doped Nanotube Junctions , 1999 .

[53]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[54]  Jerry Tersoff,et al.  Novel Length Scales in Nanotube Devices , 1999 .

[55]  R. Stanley Williams,et al.  Lithographic positioning of self-assembled Ge islands on Si(001) , 1997 .

[56]  Erik H. Anderson,et al.  Nanoscale molecular-switch devices fabricated by imprint lithography , 2003 .

[57]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[58]  F. Morris,et al.  Resonant tunneling circuit technology: has it arrived? , 1997, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 19th Annual Technical Digest 1997.

[59]  W. Porod,et al.  Quantum-dot cellular automata , 1999 .

[60]  Leon O. Chua,et al.  Cellular neural networks based on resonant tunnelling diodes , 2001, Int. J. Circuit Theory Appl..

[61]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[62]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[63]  Doyeol Ahn,et al.  Single-electron transistor based on a silicon-on-insulator quantum wire fabricated by a side-wall patterning method , 2001 .

[64]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[65]  C. D. Parker,et al.  Resonant tunnel diodes as submillimetre-wave sources , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  J.P.A. van der Wagt,et al.  RTD/HFET low standby power SRAM gain cell , 1998, IEEE Electron Device Letters.

[67]  S. Mantl,et al.  High performance Si/Si/sub 1-x/Gex resonant tunneling diodes , 2001, IEEE Electron Device Letters.

[68]  Bobby Brar,et al.  Beyond-The-Roadmap Technology: Silicon Heterojunctions, Optoelectronics, and Quantum Devices , 1997 .

[69]  R. Metzger,et al.  Unimolecular electrical rectifiers. , 2003, Chemical reviews.

[70]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[71]  Pinaki Mazumder,et al.  Monolithically integrated InP-based minority logic gate using an RTD/HBT heterostructure , 1998, Conference Proceedings. 1998 International Conference on Indium Phosphide and Related Materials (Cat. No.98CH36129).

[72]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.

[73]  Eiiti Wada,et al.  Esaki Diode High-Speed Logical Circuits , 1960, IRE Trans. Electron. Comput..

[74]  Y. Nakagome,et al.  Trends in low-power RAM circuit technologies , 1995 .

[75]  A. Toriumi,et al.  Room temperature negative differential conductance in three-terminal silicon surface tunneling device , 1996, International Electron Devices Meeting. Technical Digest.

[76]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[77]  Michael T. Niemier,et al.  Exploring and exploiting wire-level pipelining in emerging technologies , 2001, Proceedings 28th Annual International Symposium on Computer Architecture.

[78]  Yi Luo,et al.  The molecule-electrode interface in single-molecule transistors. , 2003, Angewandte Chemie.

[79]  T. Mizutani,et al.  Functions and applications of monostable-bistable transition logic elements (MOBILE's) having multiple-input terminals , 1994 .

[80]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[81]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[82]  Theodore I. Kamins,et al.  Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures , 1997 .

[83]  M. Reed,et al.  Computing with molecules. , 2000, Scientific American.

[84]  Yoshiyuki Kawazoe,et al.  Electronic and transport properties of N-P doped nanotubes , 1999 .

[85]  Guanrong Chen,et al.  Chaos in Circuits and Systems , 2002 .

[86]  Xiaoyu Zheng,et al.  A Si bistable diode utilizing interband tunneling junctions , 1997 .

[87]  James C. Ellenbogen,et al.  Overview of nanoelectronic devices , 1997, Proc. IEEE.

[88]  Yasuo Takahashi,et al.  Multigate single-electron transistors and their application to an exclusive-OR gate , 2000 .

[89]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[90]  Kazuo Yano,et al.  A room-temperature single-electron memory device using fine-grain polycrystalline silicon , 1993, Proceedings of IEEE International Electron Devices Meeting.

[91]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum dots for quantum cellular automata , 1993 .