Comparative Review of Long-Term Energy Storage Technologies for Renewable Energy Systems

Energetikos sistemų issilaikomumui užtikrinti gaminant energiją reikės naudoti daug atsinaujinancių energijos saltinių. Vėjo energija yra vienas is svariausių ir saugiausių atsinaujinancių elektros energijos saltinių. Taciau vėjo energijos fliuktuacijos turi neigiamą poveikį energijos kokybei (įtampai ir sistemos dažniui). Energijos kaupimo įtaisai bus reikalingi skirtingose energijos sistemos vietose perteklinei energijai is atsinaujinancių saltinių kaupti ir vėliau jai panaudoti. Pateikiama skirtingų kaupimo technologijų apžvalga. Il. 10, bibl. 20, lent. 3 (anglų kalba; santraukos anglų ir lietuvių k.). DOI: http://dx.doi.org/10.5755/j01.eee.118.2.1168

[1]  Mehmet Uzunoglu,et al.  Modeling, control and simulation of an autonomous wind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system , 2008 .

[2]  K.J. Tseng,et al.  A flywheel cell for energy storage system , 2008, 2008 IEEE International Conference on Sustainable Energy Technologies.

[3]  C N Rasmussen Improving wind power quality with energy storage , 2009, 2009 IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE).

[4]  V. Vongmanee,et al.  A new concept of small-compressed air energy storage system integrated with induction generator , 2008, 2008 IEEE International Conference on Sustainable Energy Technologies.

[5]  J. Paatero Energy storage options for improving wind power quality , 2006 .

[6]  Dmitri Vinnikov,et al.  New method for stabilization of wind power generation using energy storage technology. , 2010 .

[7]  A.K. Srivastava,et al.  Generation scheduling with integration of wind power and compressed air energy storage , 2010, IEEE PES T&D 2010.

[8]  R. Castro,et al.  An overview on short and long-term response energy storage devices for power systems applications , 2008 .

[9]  Shuang Yu,et al.  A new methodology for designing hydrogen energy storage in wind power systems to balance generation and demand , 2009, 2009 International Conference on Sustainable Power Generation and Supply.

[10]  R. Anilionis,et al.  Thermal Oxidation Process Influence to the Three-Dimensional Integrated Structures , 2009 .

[11]  P.K. Sen,et al.  Advancement of energy storage devices and applications in electrical power system , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[12]  D. Eidukas,et al.  Modeling of Efficiency of Dynamic Electronic Systems , 2008 .

[13]  Dmitri Vinnikov,et al.  A hydrogen technology as buffer for stabilization o f wind power generation , 2010 .

[14]  H. Reiser,et al.  Energy storage for renewable energy combined heat, power and hydrogen fuel (CHPH2) infrastructure , 2009, 2009 IEEE Electrical Power & Energy Conference (EPEC).

[15]  N. H. Clark,et al.  Technologies for energy storage. Flywheels and super conducting magnetic energy storage , 2000, 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134).

[16]  D.M. Vilathgamuwa,et al.  Energy storage systems in distributed generation schemes , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[17]  R.B. Schainker,et al.  Executive overview: energy storage options for a sustainable energy future , 2004, IEEE Power Engineering Society General Meeting, 2004..