Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor

This article provides a tutorial introduction to modeling, estimation, and control for multirotor aerial vehicles that includes the common four-rotor or quadrotor case.

[1]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[2]  Rogelio Lozano,et al.  DYNAMIC MODELLING AND CONFIGURATION STABILIZATION FOR AN X4-FLYER. , 2002 .

[3]  T. Hamel,et al.  A practical Visual Servo Control for a Unmanned Aerial Vehicle , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[4]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[5]  Steven Lake Waslander,et al.  Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering , 2009, 2009 IEEE International Conference on Robotics and Automation.

[6]  Nicolas Petit,et al.  The Navigation and Control technology inside the AR.Drone micro UAV , 2011 .

[7]  G. Gerhart,et al.  Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments , 2009 .

[8]  Richard M. Murray,et al.  Real Time Trajectory Generation for Differentially Flat Systems , 1996 .

[9]  Vijay Kumar,et al.  Minimum snap trajectory generation and control for quadrotors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[10]  Roland Siegwart,et al.  Design and control of an indoor micro quadrotor , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[11]  Takeo Kanade,et al.  Vision-Based Autonomous Helicopter Research at Carnegie Mellon Robotics Institute 1991-1997 , 1998 .

[12]  Peter I. Corke An inertial and visual sensing system for a small autonomous helicopter , 2004 .

[13]  Marc Pollefeys,et al.  PIXHAWK: A system for autonomous flight using onboard computer vision , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Vijay Kumar,et al.  Trajectory generation and control for precise aggressive maneuvers with quadrotors , 2012, Int. J. Robotics Res..

[15]  E. Niebur From living eyes to seeing machines, M.V. Srinivasan, S. Venkatesh. Oxford University Press (1997), ISBN 0 198 577 850 , 1997 .

[16]  Robert E. Mahony,et al.  Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.

[17]  Nicholas Roy,et al.  RANGE - robust autonomous navigation in GPS-denied environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[18]  Philippe Martin,et al.  Non-Linear Symmetry-Preserving Observers on Lie Groups , 2007, IEEE Transactions on Automatic Control.

[19]  Peter I. Corke,et al.  Robotics, Vision and Control - Fundamental Algorithms in MATLAB® , 2011, Springer Tracts in Advanced Robotics.

[20]  Tarek Hamel,et al.  Dynamic Image-Based Visual Servo Control Using Centroid and Optic Flow Features , 2008 .

[21]  Taeyoung Lee,et al.  Geometric tracking control of a quadrotor UAV on SE(3) , 2010, 49th IEEE Conference on Decision and Control (CDC).

[22]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[23]  Philippe Martin,et al.  The true role of accelerometer feedback in quadrotor control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[24]  Robert E. Mahony,et al.  Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach , 2002, IEEE Trans. Robotics Autom..

[25]  Peter I. Corke,et al.  Spherical image-based visual servo and structure estimation , 2010, 2010 IEEE International Conference on Robotics and Automation.

[26]  Peter Corke,et al.  An Introduction to Inertial and Visual Sensing , 2007, Int. J. Robotics Res..

[27]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[28]  C. H. Wolowicz,et al.  Similitude requirements and scaling relationships as applied to model testing , 1979 .