An overview of latent Markov models for longitudinal categorical data

We provide a comprehensive overview of latent Markov (LM) models for the analysis of longitudinal categorical data. The main assumption behind these models is that the response variables are conditionally independent given a latent process which follows a first-order Markov chain. We first illustrate the basic LM model in which the conditional distribution of each response variable given the corresponding latent variable and the initial and transition probabilities of the latent process are unconstrained. For this model we also illustrate in detail maximum likelihood estimation through the Expectation-Maximization algorithm, which may be efficiently implemented by recursions known in the hidden Markov literature. We then illustrate several constrained versions of the basic LM model, which make the model more parsimonious and allow us to include and test hypotheses of interest. These constraints may be put on the conditional distribution of the response variables given the latent process (measurement model) or on the distribution of the latent process (latent model). We also deal with extensions of LM model for the inclusion of individual covariates and to multilevel data. Covariates may affect the measurement or the latent model; we discuss the implications of these two different approaches according to the context of application. Finally, we outline methods for obtaining standard errors for the parameter estimates, for selecting the number of states and for path prediction. Models and related inference are illustrated by the description of relevant socio-economic applications available in the literature.

[1]  R. McHugh Efficient estimation and local identification in latent class analysis , 1956 .

[2]  G. Rasch On General Laws and the Meaning of Measurement in Psychology , 1961 .

[3]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[4]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[5]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[6]  H. Akaike INFORMATION THEORY AS AN EXTENSION OF THE MAXIMUM LIKELIHOOD , 1973 .

[7]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[8]  Lee Manning Wiggins,et al.  Panel analysis : Latent probability models for attitude and behavior processes , 1974 .

[9]  Otis Dudley Duncan,et al.  Panel Analysis: Latent Probability Models for Attitude and Behavior Processes. , 1975 .

[10]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[11]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[12]  L. R. Rabiner,et al.  An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.

[13]  Jan de Leeuw,et al.  A Latent Markov Model to Correct for Measurement Error , 1986 .

[14]  Norman Verhelst,et al.  Maximum Likelihood Estimation in Generalized Rasch Models , 1986 .

[15]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[16]  A. Shapiro Towards a unified theory of inequality constrained testing in multivariate analysis , 1988 .

[17]  F. V. D. Pol,et al.  MIXED MARKOV LATENT CLASS MODELS , 1990 .

[18]  B. Lindsay,et al.  Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .

[19]  Scott Menard,et al.  Multiple Problem Youth: Delinquency, Substance Use, and Mental Health Problems , 1991 .

[20]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[21]  L. Collins,et al.  Latent Class Models for Stage-Sequential Dynamic Latent Variables , 1992 .

[22]  Angela Dale,et al.  Discrete-Time Mixed Markov Latent Class Models , 1994 .

[23]  Rolf Langeheine,et al.  Latent variables Markov models. , 1994 .

[24]  J. Vermunt,et al.  Discrete-Time Discrete-State Latent Markov Models with Time-Constant and Time-Varying Covariates , 1999 .

[25]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[26]  Murray A. Cameron,et al.  Hidden Markov chains in generalized linear models , 1998 .

[27]  Hans Kiinsch,et al.  State Space and Hidden Markov Models , 2000 .

[28]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[29]  P. Sen,et al.  Constrained Statistical Inference: Inequality, Order, and Shape Restrictions , 2001 .

[30]  A. Forcina,et al.  Marginal regression models for the analysis of positive association of ordinal response variables , 2001 .

[31]  Jay Magidson,et al.  Latent Class Factor and Cluster Models, Bi-Plots, and Related Graphical Displays , 2001 .

[32]  S. L. Scott Bayesian Methods for Hidden Markov Models , 2002 .

[33]  James P. Hughes,et al.  Exact Computation of the Observed Information Matrix for Hidden Markov Models , 2002 .

[34]  Francesco Bartolucci,et al.  A recursive algorithm for Markov random fields , 2002 .

[35]  D. Titterington,et al.  Parameter estimation for hidden Markov chains , 2002 .

[36]  André Berchtold,et al.  Optimization of Mixture Models: Comparison of Different Strategies , 2004, Comput. Stat..

[37]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[38]  Ning-Zhong Shi,et al.  The restricted EM algorithm under inequality restrictions on the parameters , 2005 .

[39]  Francesco Bartolucci,et al.  Likelihood inference on the underlying structure of IRT models , 2005 .

[40]  F. Bartolucci Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities , 2006 .

[41]  Francesco Bartolucci,et al.  A latent Markov model for detecting patterns of criminal activity , 2007 .

[42]  R. Altman Mixed Hidden Markov Models , 2007 .

[43]  Francesco Bartolucci,et al.  An extended class of marginal link functions for modelling contingency tables by equality and inequality constraints , 2007 .

[44]  Tammo H. A. Bijmolt,et al.  Discrete time, discrete state latent Markov modelling for assessing and predicting household acquisitions of financial products , 2007 .

[45]  Frank Rijmen,et al.  Drive for thinness, affect regulation and physical activity in eating disorders: a daily life study. , 2007, Behaviour research and therapy.

[46]  Francesco Bartolucci,et al.  A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects , 2007, Biometrics.

[47]  David Kapland,et al.  An overview of Markov chain methods for the study of stage-sequential developmental processes. , 2008, Developmental psychology.

[48]  Lutz Bornmann,et al.  Latent Markov modeling applied to grant peer review , 2006, J. Informetrics.

[49]  Rolf Turner,et al.  Direct maximization of the likelihood of a hidden Markov model , 2008, Comput. Stat. Data Anal..

[50]  Paul De Boeck,et al.  Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations , 2007, Psychometrika.

[51]  A. Farcomeni,et al.  A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure , 2009 .

[52]  Francesco Bartolucci,et al.  Latent Markov model for longitudinal binary data: An application to the performance evaluation of nursing homes , 2009, 0908.2300.

[53]  Francesco Bartolucci,et al.  Assessment of School Performance Through a Multilevel Latent Markov Rasch Model , 2009, 0909.4961.

[54]  Francesco Bartolucci,et al.  Likelihood inference for the latent Markov Rasch model , 2010 .