Study of Context Inuence on Classiers Trained under Dierent Video-Document Representations

The problem of content-based video retrieval continues to pose a challenge to the research community, the performance of video retrieval systems being low due to the semantic gap. In this paper we consider whether taking advantage of context can aid the video retrieval process by making the prediction of relevance easier, i.e. if it is easier for a classication system to predict the relevance of a video shot under a given context, then that context has potential in also improving retrieval, since the underlying features better dierentiate relevant from non-relevant video shots. We use an operational denition

[1]  Robert Villa,et al.  FacetBrowser: a user interface for complex search tasks , 2008, ACM Multimedia.

[2]  Amanda Spink,et al.  Issues of context in information retrieval (IR): an introduction to the special issue , 2002, Inf. Process. Manag..

[3]  Rong Yan,et al.  Co-retrieval: A Boosted Reranking Approach for Video Retrieval , 2004, CIVR.

[4]  Carol L. Barry,et al.  Users' Criteria for Relevance Evaluation: A Cross-situational Comparison , 1998, Inf. Process. Manag..

[5]  Robert Villa,et al.  Comparison of Feature Construction Methods for Video Relevance Prediction , 2009, MMM.

[6]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[7]  Steve Fox,et al.  Evaluating implicit measures to improve web search , 2005, TOIS.

[8]  Joemon M. Jose,et al.  Glasgow University at TRECVid 2006 , 2006, TRECVID.

[9]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Peter Ingwersen,et al.  Information retrieval in context: IRiX , 2005, SIGF.

[11]  Nicholas J. Belkin,et al.  Display time as implicit feedback: understanding task effects , 2004, SIGIR '04.

[12]  Joemon M. Jose,et al.  How users assess Web pages for information seeking , 2005, J. Assoc. Inf. Sci. Technol..

[13]  Nicholas J. Belkin,et al.  Information retrieval in context - IRiX: workshop at SIGIR 2004 - Sheffield , 2004, SIGF.

[14]  Paul Over,et al.  TRECVID 2007--Overview , 2007, TRECVID.

[15]  Thierry Urruty,et al.  Simulated evaluation of faceted browsing based on feature selection , 2010, Multimedia Tools and Applications.

[16]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[17]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[18]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[19]  Paul Over,et al.  TRECVID 2006 Overview , 2006, TRECVID.

[20]  Eric Brill,et al.  Improving web search ranking by incorporating user behavior information , 2006, SIGIR.

[21]  Fabio Crestani,et al.  Introduction to special issue on contextual information retrieval systems , 2007, Information Retrieval.

[22]  Robert Villa,et al.  A study of awareness in multimedia search , 2008, JCDL '08.