Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption

Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.

[1]  James H. Dieterich,et al.  Deformation from Inflation of a Dipping Finite Prolate Spheroid in an Elastic Half‐Space as a Model for Volcanic Stressing , 1988 .

[2]  D. Mctigue Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox , 1987 .

[3]  E. Guidoboni,et al.  The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 ad) , 2011 .

[4]  John J. Dvorak,et al.  Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents , 1997 .

[5]  I. Nairn,et al.  Geology and eruptive history of the Rabaul Caldera area, Papua New Guinea , 1995 .

[6]  S. Iodice,et al.  Intersection of exogenous, endogenous and anthropogenic factors in the Holocene landscape: A study of the Naples coastline during the last 6000 years , 2013 .

[7]  Jean Virieux,et al.  Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera , 2008 .

[8]  Ian Parsons,et al.  Surface deformation due to shear and tensile faults in a half-space , 1986 .

[9]  F. Giudicepietro,et al.  Sill intrusion as a source mechanism of unrest at volcanic calderas , 2014 .

[10]  G. Orsi,et al.  The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera – Italy) assessed by 40Ar/39Ar dating method , 2004 .

[11]  Mark Simons,et al.  Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy , 2001 .

[12]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[13]  Valerio Acocella,et al.  An overview of recent (1988 to 2014) caldera unrest: Knowledge and perspectives , 2015 .

[14]  G. Rolandi,et al.  New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy) , 2001 .

[15]  M. Brown,et al.  Granite: From genesis to emplacement , 2012 .

[16]  Robert M. Owen,et al.  Statistical Tests for Closure of Plate Motion Circuits (Paper 7L7161) , 1987 .

[17]  M. A. Di Vito,et al.  The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration , 1996 .

[18]  L. Pappalardo,et al.  Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy , 2005 .

[19]  R. Moretti,et al.  Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: The example of the Nisida eruption , 2016 .

[20]  C. Morhange,et al.  New data on historical relative sea level movements in Pozzuoli, phlaegrean fields, Southern Italy , 1999 .

[21]  Christophe Morhange,et al.  Rapid sea-level movements and noneruptive crustal deformations in the Phlegrean Fields caldera, Italy , 2006 .

[22]  D. Dingwell,et al.  Concentration variance decay during magma mixing: a volcanic chronometer , 2015, Scientific Reports.

[23]  I. Arienzo,et al.  The magmatic feeding system of the Campi Flegrei caldera: Architecture and temporal evolution , 2011 .

[24]  Massimo D'Antonio,et al.  Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy) , 1999 .

[25]  Maurizio Battaglia,et al.  dMODELS: A MATLAB software package for modeling crustal deformation near active faults and volcanic centers , 2013 .

[26]  James H. Dieterich,et al.  Finite element modeling of surface deformation associated with volcanism , 1975 .

[27]  G. Orsi,et al.  Geochemical and B–Sr–Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy) , 2009 .

[28]  G. P. Ricciardi,et al.  Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905-2009 , 2010 .

[29]  Christopher G. Newhall,et al.  Historical unrest at large calderas of the world , 1989 .

[30]  L. Lirer,et al.  The 1538 Monte Nuovo eruption (Campi Flegrei, Italy) , 1987 .

[31]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[32]  M. Bagnardi,et al.  How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes , 2015 .

[33]  David P. Hill,et al.  Analytical modeling of gravity changes and crustal deformation at volcanoes: The Long Valley caldera, California, case study , 2009 .

[34]  Rosario Avino,et al.  Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations , 2012 .

[35]  Valerio Acocella,et al.  Rock Fractures in Geological Processes: Index , 2011 .

[36]  J. Virieux,et al.  Seismic Evidence of an Extended Magmatic Sill Under Mt. Vesuvius , 2001, Science.

[37]  J. Renaud Numerical Optimization, Theoretical and Practical Aspects— , 2006, IEEE Transactions on Automatic Control.

[38]  Claudia Troise,et al.  Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy) , 2006 .

[39]  G. Walker Downsag calderas, ring faults, caldera sizes, and incremental caldera growth , 1984 .

[40]  Charles Dubois,et al.  Pouzzoles antique (histoire et topographie) , 1907 .

[41]  E. Horsman,et al.  Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs , 2011 .

[42]  L. Crescentini,et al.  Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent (1980–2010) deformation history , 2014 .

[43]  E. Boschi,et al.  The Campi Flegrei caldera: unrest mechanisms and hazards , 2006, Geological Society, London, Special Publications.

[44]  Riccardo Lanari,et al.  Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera , 2015, Scientific Reports.