Tsallis entropy and entanglement constraints in multiqubit systems

We show that the restricted shareability and distribution of multiqubit entanglement can be characterized by Tsallis-$q$ entropy. We first provide a class of bipartite entanglement measures named Tsallis-$q$ entanglement, and provide its analytic formula in two-qubit systems for $1\ensuremath{\leqslant}q\ensuremath{\leqslant}4$. For $2\ensuremath{\leqslant}q\ensuremath{\leqslant}3$, we show a monogamy inequality of multiqubit entanglement in terms of Tsallis-$q$ entanglement, and we also provide a polygamy inequality using Tsallis-$q$ entropy for $1\ensuremath{\leqslant}q\ensuremath{\leqslant}2$ and $3\ensuremath{\leqslant}q\ensuremath{\leqslant}4$.

[1]  Barbara M. Terhal Is entanglement monogamous? , 2004, IBM J. Res. Dev..

[2]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[3]  Jeong San Kim,et al.  Generalized W-class state and its monogamy relation , 2008, 0805.1690.

[4]  A. R. Plastino,et al.  Conditional q-entropies and quantum separability: a numerical exploration , 2002 .

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  M. Horodecki,et al.  Quantum α-entropy inequalities: independent condition for local realism? , 1996 .

[7]  Barry C. Sanders,et al.  Dual monogamy inequality for entanglement , 2007 .

[8]  A. K. Rajagopal,et al.  Classical statistics inherent in a quantum density matrix , 2005 .

[9]  Jeong San Kim,et al.  Polygamy of distributed entanglement , 2009, 0903.4413.

[10]  Sumiyoshi Abe,et al.  Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  P. Landsberg,et al.  Distributions and channel capacities in generalized statistical mechanics , 1998 .

[12]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  Lluis Masanes,et al.  Universally-composable privacy amplification from causality constraints , 2008, Physical review letters.

[14]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[15]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[16]  Frank Verstraete,et al.  Local vs. joint measurements for the entanglement of assistance , 2003, Quantum Inf. Comput..

[17]  G. Vidal On the characterization of entanglement , 1998 .

[18]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[19]  C. Tsallis,et al.  Peres criterion for separability through nonextensive entropy , 2001 .

[20]  Funabashi,et al.  Nonadditive conditional entropy and its significance for local realism , 2000, quant-ph/0001085.

[21]  O. Cohen,et al.  Unlocking Hidden Entanglement with Classical Information , 1998 .

[22]  Barry C. Sanders,et al.  Duality for monogamy of entanglement , 2006, quant-ph/0606168.

[23]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[24]  R. Rossignoli,et al.  Generalized entropic criterion for separability , 2002, 1505.03608.

[25]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[26]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.