Tsallis entropy and entanglement constraints in multiqubit systems
暂无分享,去创建一个
[1] Barbara M. Terhal. Is entanglement monogamous? , 2004, IBM J. Res. Dev..
[2] F. Verstraete,et al. General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.
[3] Jeong San Kim,et al. Generalized W-class state and its monogamy relation , 2008, 0805.1690.
[4] A. R. Plastino,et al. Conditional q-entropies and quantum separability: a numerical exploration , 2002 .
[5] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[6] M. Horodecki,et al. Quantum α-entropy inequalities: independent condition for local realism? , 1996 .
[7] Barry C. Sanders,et al. Dual monogamy inequality for entanglement , 2007 .
[8] A. K. Rajagopal,et al. Classical statistics inherent in a quantum density matrix , 2005 .
[9] Jeong San Kim,et al. Polygamy of distributed entanglement , 2009, 0903.4413.
[10] Sumiyoshi Abe,et al. Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] P. Landsberg,et al. Distributions and channel capacities in generalized statistical mechanics , 1998 .
[12] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[13] Lluis Masanes,et al. Universally-composable privacy amplification from causality constraints , 2008, Physical review letters.
[14] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[15] A. Vaziri,et al. Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.
[16] Frank Verstraete,et al. Local vs. joint measurements for the entanglement of assistance , 2003, Quantum Inf. Comput..
[17] G. Vidal. On the characterization of entanglement , 1998 .
[18] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[19] C. Tsallis,et al. Peres criterion for separability through nonextensive entropy , 2001 .
[20] Funabashi,et al. Nonadditive conditional entropy and its significance for local realism , 2000, quant-ph/0001085.
[21] O. Cohen,et al. Unlocking Hidden Entanglement with Classical Information , 1998 .
[22] Barry C. Sanders,et al. Duality for monogamy of entanglement , 2006, quant-ph/0606168.
[23] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[24] R. Rossignoli,et al. Generalized entropic criterion for separability , 2002, 1505.03608.
[25] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[26] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.