Bohr Almost Periodic Sets of Toral Type

A locally finite multiset $$(\Lambda ,c),$$ ( Λ , c ) , $$\Lambda \subset {\mathbb {R}}^n, c : \Lambda \mapsto \{1,...,b\}$$ Λ ⊂ R n , c : Λ ↦ { 1 , . . . , b } defines a Radon measure $$\mu := \sum _{\lambda \in \Lambda } c(\lambda )\, \delta _\lambda $$ μ : = ∑ λ ∈ Λ c ( λ ) δ λ that is Bohr almost periodic in the sense of Favorov if the convolution $$\mu *f$$ μ ∗ f is Bohr almost periodic for every $$f \in C_c({\mathbb {R}}^n).$$ f ∈ C c ( R n ) . If it is of toral type: the Fourier transform $${\mathfrak {F}} \mu $$ F μ equals zero outside of a rank $$m < \infty $$ m < ∞ subgroup, then there exists a compactification $$\psi : {\mathbb {R}}^n \mapsto {\mathbb {T}}^m$$ ψ : R n ↦ T m of $$\mathbb R^n,$$ R n , a foliation of $${\mathbb {T}}^m,$$ T m , and a pair $$(K,\kappa )$$ ( K , κ ) where $$K := \overline{\psi (\Lambda )}$$ K : = ψ ( Λ ) ¯ and $$\kappa $$ κ is a measure supported on K such that $${\mathfrak {F}} \kappa = ({\mathfrak {F}} \mu ) \circ \widehat{\psi }$$ F κ = ( F μ ) ∘ ψ ^ where $${\widehat{\psi }} : \widehat{{\mathbb {T}}^m} \mapsto \widehat{{\mathbb {R}}^n}$$ ψ ^ : T m ^ ↦ R n ^ is the Pontryagin dual of $$\psi .$$ ψ . For $$(\Lambda ,c)$$ ( Λ , c ) uniformly discrete, we prove that every connected component of K is homeomorphic to $${\mathbb {T}}^{m-n}$$ T m - n embedded transverse to the foliation and the homotopy of its embedding is a rank $$m-n$$ m - n subgroup S of $${\mathbb {Z}}^m,$$ Z m , and we compute its density as a function of S and $$\psi .$$ ψ . For $$n = 1$$ n = 1 and K , a nonsingular real algebraic variety, this construction gives all Fourier quasicrystals recently characterized by Olevskii and Ulanovskii.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  A. Olevskiǐ,et al.  A Simple Crystalline Measure , 2020, 2006.12037.

[3]  H. Smith I. On systems of linear indeterminate equations and congruences , 1862, Proceedings of the Royal Society of London.

[4]  S. Favorov Bohr and Besicovitch almost periodic discrete sets and quasicrystals , 2010, 1011.4036.

[5]  B. Delaunay Neue Darstellung der geometrischen Kristallographie , 1933 .

[6]  S.Favorov,et al.  Perturbations of discrete lattices and almost periodic sets , 2010, 1002.0094.

[7]  Bruno Calado,et al.  Nombres de Pisot , 2009 .

[8]  N. Wiener,et al.  Almost Periodic Functions , 1932, The Mathematical Gazette.

[9]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[10]  P. R. Ahern,et al.  Inner functions in the polydisc and measures on the torus. , 1973 .

[11]  Harald Bohr,et al.  Zur Theorie der fastperiodischen Funktionen , 1926 .

[12]  A. Olevskiǐ,et al.  Fourier Quasicrystals with Unit Masses , 2020, Comptes rendus. Mathematique.

[13]  Yves Meyer,et al.  Algebraic numbers and harmonic analysis , 1972 .

[14]  M. Baake,et al.  Mathematical quasicrystals and the problem of diffraction , 2000 .

[15]  S.Favorov,et al.  Almost periodic discrete sets , 2010, 1002.0091.

[16]  A. Olevskiǐ,et al.  Fourier quasicrystals and discreteness of the diffraction spectrum , 2015, 1512.08735.

[17]  A. Olevskiǐ,et al.  Quasicrystals and Poisson’s summation formula , 2013, 1312.6884.

[18]  John W. Cahn,et al.  Quasicrystals , 2001, Journal of research of the National Institute of Standards and Technology.

[19]  Jeffrey C. Lagarias,et al.  Meyer's concept of quasicrystal and quasiregular sets , 1996 .

[20]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[21]  S. Favorov Fourier quasicrystals and Lagarias' conjecture , 2015, 1503.00172.

[22]  J. Stembridge Multidimensional Residues and Their Applications , 2022 .

[23]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[24]  R. Moody Meyer Sets and the Finite Generation of Quasicrystals , 1995 .

[25]  W. Lawton Proof of the Hyperplane Zeros Conjecture of Lagarias and Wang , 2007, math/0703249.

[26]  A. K. T︠S︡ikh Multidimensional Residues and Their Applications , 1992 .

[27]  Michael Baake,et al.  A Guide to Mathematical Quasicrystals , 2002 .

[28]  Y. Meyer Measures with locally finite support and spectrum , 2016, Proceedings of the National Academy of Sciences.

[29]  John W. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[30]  R. Ho Algebraic Topology , 2022 .

[31]  A. Besicovitch On Generalized Almost Periodic Functions , 1926 .

[32]  E. C. Titchmarsh The Zeros of Certain Integral Functions , 1926 .

[33]  A. Olevskiǐ,et al.  Quasicrystals with discrete support and spectrum , 2014, 1501.00085.

[34]  S. Semmes Topological Vector Spaces , 2003 .

[35]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[36]  Yves Meyer,et al.  Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .