Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution.

Conjugated polymers, comprising fully π-conjugated systems, present a new generation of heterogeneous photocatalysts for solar-energy utilization. They have three key features, namely robustness, nontoxicity, and visible-light activity, for photocatalytic processes, thus making them appealing candidates for scale-up. Presented in this Minireview, is a brief summary on the recent development of various promising polymer photocatalysts for hydrogen evolution from aqueous solutions, including linear polymers, planarized polymers, triazine/heptazine polymers, and other related organic conjugated semiconductors, with a particular focus on the rational manipulation in the composition, architectures, and optical and electronic properties that are relevant to photophysical and photochemical properties. Some future trends and prospects for organic conjugated photocatalysts in artificial photosynthesis, by water splitting, are also envisaged.

[1]  K. Landfester,et al.  Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. , 2016, Angewandte Chemie.

[2]  N. Zhang,et al.  Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. , 2016, Journal of the American Chemical Society.

[3]  I. Sharp,et al.  Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. , 2016, Nature materials.

[4]  R. Schomäcker,et al.  Donor–Acceptor‐Type Heptazine‐Based Polymer Networks for Photocatalytic Hydrogen Evolution , 2016 .

[5]  Yongfan Zhang,et al.  Tri-s-triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis , 2016 .

[6]  F. Rominger,et al.  Rigid Conjugated Twisted Truxene Dimers and Trimers as Electron Acceptors. , 2016, Angewandte Chemie.

[7]  Yuguang Ma,et al.  Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. , 2016, Angewandte Chemie.

[8]  Xinchen Wang,et al.  Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents† †Electronic supplementary information (ESI) available: Characterization and experimental detail. See DOI: 10.1039/c5sc04572j , 2016, Chemical science.

[9]  Reiner Sebastian Sprick,et al.  Visible‐Light‐Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts , 2015, Angewandte Chemie.

[10]  Mingzai Wu,et al.  A review on g-C3N4 for photocatalytic water splitting and CO2 reduction , 2015 .

[11]  Xi‐Wen Du,et al.  Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production , 2015 .

[12]  Jiayin Yuan,et al.  Heterophase Photocatalysts from Water-Soluble Conjugated Polyelectrolytes: An Example of Self-Initiation under Visible Light. , 2015, Angewandte Chemie.

[13]  Katharina Landfester,et al.  Heterophasen‐Photokatalysatoren aus wasserlöslichen Polyelektrolyten: ein Beispiel für die Selbstinitiierung unter sichtbarem Licht , 2015 .

[14]  Jinhua Ye,et al.  Nature-Inspired Environmental "Phosphorylation" Boosts Photocatalytic H2 Production over Carbon Nitride Nanosheets under Visible-Light Irradiation. , 2015, Angewandte Chemie.

[15]  D. Jiang,et al.  Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. , 2015, Nature chemistry.

[16]  B. Lotsch,et al.  Phenyl-triazine oligomers for light-driven hydrogen evolution , 2015 .

[17]  Xinchen Wang,et al.  Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications , 2015 .

[18]  Xinchen Wang,et al.  Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. , 2015, Angewandte Chemie.

[19]  Bo Wang,et al.  Polymeres graphitisches Kohlenstoffnitrid für die nachhaltige Photoredoxkatalyse , 2015 .

[20]  K. Landfester,et al.  Molecular Structural Design of Conjugated Microporous Poly(Benzooxadiazole) Networks for Enhanced Photocatalytic Activity with Visible Light , 2015, Advanced materials.

[21]  Ling Wu,et al.  Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water. , 2015, Macromolecular rapid communications.

[22]  C. Ochsenfeld,et al.  A tunable azine covalent organic framework platform for visible light-induced hydrogen generation , 2015, Nature Communications.

[23]  Jiaguo Yu,et al.  Graphene-Based Photocatalysts for Solar-Fuel Generation. , 2015, Angewandte Chemie.

[24]  L. Qu,et al.  A Graphitic-C3N4 "Seaweed" Architecture for Enhanced Hydrogen Evolution. , 2015, Angewandte Chemie.

[25]  Quanjun Xiang,et al.  Photokatalysatoren auf Graphenbasis für die Produktion von Solarbrennstoffen , 2015 .

[26]  S. Irle,et al.  Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies , 2015, Nature Communications.

[27]  Jinshui Zhang,et al.  Solar Water Splitting at λ=600 nm: A Step Closer to Sustainable Hydrogen Production. , 2015, Angewandte Chemie.

[28]  Xinchen Wang,et al.  Solare Wasserspaltung bei λ=600 nm: ein weiterer Schritt hin zu nachhaltiger Wasserstofferzeugung , 2015 .

[29]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[30]  Xinchen Wang,et al.  Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. , 2015, Chemical communications.

[31]  Bao-hang Han,et al.  Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. , 2015, Angewandte Chemie.

[32]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide (TMD) nanosheets. , 2015, Chemical Society reviews.

[33]  S. Dai,et al.  Hypercrosslinked phenolic polymers with well-developed mesoporous frameworks. , 2015, Angewandte Chemie.

[34]  K. Domen,et al.  A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. , 2015, Angewandte Chemie.

[35]  Reiner Sebastian Sprick,et al.  Tunable organic photocatalysts for visible-light-driven hydrogen evolution. , 2015, Journal of the American Chemical Society.

[36]  Kazuhiko Maeda,et al.  Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. , 2015, Angewandte Chemie.

[37]  L. Qu,et al.  Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. , 2014, Angewandte Chemie.

[38]  Hui‐Ming Cheng,et al.  Increasing the Visible Light Absorption of Graphitic Carbon Nitride (Melon) Photocatalysts by Homogeneous Self‐Modification with Nitrogen Vacancies , 2014, Advanced materials.

[39]  Jacek K. Stolarczyk,et al.  Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. , 2014, Nature materials.

[40]  Xinchen Wang,et al.  Helical graphitic carbon nitrides with photocatalytic and optical activities. , 2014, Angewandte Chemie.

[41]  M. Jaroniec,et al.  Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. , 2014, Chemical Society reviews.

[42]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[43]  M. Bhunia,et al.  Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. , 2014, Angewandte Chemie.

[44]  Zhe Li,et al.  Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell** , 2014, Angewandte Chemie.

[45]  Junwang Tang,et al.  Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. , 2014, Journal of the American Chemical Society.

[46]  M. Ratner,et al.  Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials. , 2014, Angewandte Chemie.

[47]  Zhengxiao Guo,et al.  Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride , 2014, Angewandte Chemie (International Ed. in English).

[48]  Danqing Liu,et al.  Heptagon-embedded pentacene: synthesis, structures, and thin-film transistors of dibenzo[d,d']benzo[1,2-a:4,5-a']dicycloheptenes. , 2014, Angewandte Chemie.

[49]  Can Yang,et al.  Nanospherical Carbon Nitride Frameworks with Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface , 2014, Advanced materials.

[50]  Xinchen Wang,et al.  Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution , 2014 .

[51]  S. Dai,et al.  Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates , 2014, Nature Communications.

[52]  Ori Gidron,et al.  α‐Oligofurane: eine aufstrebende Klasse konjugierter Oligomere für die organische Elektronik , 2014 .

[53]  M. Bendikov,et al.  α-Oligofurans: an emerging class of conjugated oligomers for organic electronics. , 2014, Angewandte Chemie.

[54]  Xinchen Wang,et al.  Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis , 2014 .

[55]  Xiaoqing Qiu,et al.  Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution , 2014, Advanced materials.

[56]  C. Ziegler,et al.  Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. , 2014, Journal of the American Chemical Society.

[57]  B. Lotsch,et al.  A hydrazone-based covalent organic framework for photocatalytic hydrogen production , 2014, 1401.3656.

[58]  A. Cooper,et al.  Molecular dynamics simulations of gas selectivity in amorphous porous molecular solids. , 2013, Journal of the American Chemical Society.

[59]  A. Nagai,et al.  An azine-linked covalent organic framework. , 2013, Journal of the American Chemical Society.

[60]  Xinchen Wang,et al.  A facile synthesis of covalent carbon nitride photocatalysts by Co-polymerization of urea and phenylurea for hydrogen evolution , 2013 .

[61]  G. Stucky,et al.  Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. , 2013, Angewandte Chemie.

[62]  A. Nagai,et al.  Conjugated microporous polymers: design, synthesis and application. , 2013, Chemical Society reviews.

[63]  M. Grätzel,et al.  Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. , 2013, Chemical communications.

[64]  Z. Zou,et al.  Bandgap modulation of polyimide photocatalyst for optimum H2 production activity under visible light irradiation , 2013 .

[65]  Arne Thomas,et al.  Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution. , 2013, Macromolecular rapid communications.

[66]  Wei Zhang,et al.  Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization , 2013 .

[67]  K. Maeda Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts , 2013 .

[68]  M. Antonietti,et al.  Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. , 2013, Journal of the American Chemical Society.

[69]  H. Bässler,et al.  Role of the effective mass and interfacial dipoles on exciton dissociation in organic donor-acceptor solar cells , 2013 .

[70]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[71]  W. Schnick,et al.  Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. , 2013, Angewandte Chemie.

[72]  Zhenzhen Lin,et al.  Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. , 2013, Angewandte Chemie.

[73]  M. Antonietti,et al.  Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. , 2013, Angewandte Chemie.

[74]  Xianzhi Fu,et al.  Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. , 2012, Angewandte Chemie.

[75]  Xinchen Wang,et al.  A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. , 2012, Angewandte Chemie.

[76]  D. Cao,et al.  Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. , 2012, Macromolecular rapid communications.

[77]  Z. Zou,et al.  Facile green synthesis of crystalline polyimide photocatalyst for hydrogen generation from water , 2012 .

[78]  Rong Xu,et al.  Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light , 2012 .

[79]  M. Antonietti,et al.  Conjugated porous polymers for energy applications , 2012 .

[80]  S. Dai,et al.  A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. , 2012, Journal of the American Chemical Society.

[81]  A. Cooper,et al.  Porous, Fluorescent, Covalent Triazine‐Based Frameworks Via Room‐Temperature and Microwave‐Assisted Synthesis , 2012, Advanced materials.

[82]  Yao Zheng,et al.  Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis , 2012 .

[83]  Jinshui Zhang,et al.  Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts , 2012 .

[84]  M. Antonietti,et al.  Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. , 2012, Angewandte Chemie.

[85]  H. Bässler,et al.  Does Conjugation Help Exciton Dissociation? A Study on Poly(p‐phenylene)s in Planar Heterojunctions with C60 or TNF , 2012, Advanced materials.

[86]  Xinchen Wang,et al.  Polymeres graphitisches Kohlenstoffnitrid als heterogener Organokatalysator: von der Photochemie über die Vielzweckkatalyse hin zur nachhaltigen Chemie , 2012 .

[87]  Yong Wang,et al.  Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. , 2012, Angewandte Chemie.

[88]  Markus Antonietti,et al.  Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles , 2012, Nature Communications.

[89]  Yuan Zhang,et al.  Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. , 2011, Journal of the American Chemical Society.

[90]  M. Antonietti,et al.  Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution , 2011 .

[91]  A. Cooper,et al.  Metal-organic conjugated microporous polymers. , 2011, Angewandte Chemie.

[92]  Arne Thomas,et al.  Cubic mesoporous graphitic carbon(IV) nitride: an all-in-one chemosensor for selective optical sensing of metal ions. , 2010, Angewandte Chemie.

[93]  M. Antonietti,et al.  Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. , 2010, Chemical communications.

[94]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[95]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[96]  Junfa Zhu,et al.  Highly energy- and time-efficient synthesis of porous triazine-based framework: microwave-enhanced ionothermal polymerization and hydrogen uptake , 2010 .

[97]  Jinhua Ye,et al.  An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. , 2010, Nature materials.

[98]  Kazuhiro Takanabe,et al.  Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. , 2010, Angewandte Chemie.

[99]  Weifeng Zhang,et al.  Synthesis, Photophysical and Photocatalytic Properties of N-Doped Sodium Niobate Sensitized by Carbon Nitride , 2009 .

[100]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[101]  M. Antonietti,et al.  Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light , 2009 .

[102]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[103]  R. Schlögl,et al.  Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts , 2008 .

[104]  Markus Antonietti,et al.  Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. , 2008, Chemistry.

[105]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[106]  Arne Thomas,et al.  Ionothermalsynthese von porösen kovalenten Triazin‐ Polymernetzwerken , 2008 .

[107]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[108]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[109]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[110]  Hideki Kato,et al.  Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. , 2004, Journal of the American Chemical Society.

[111]  O. Ishitani,et al.  Novel visible-light-driven photocatalyst: poly(p-phenylene)-catalyzed photoreductions of water, carbonyl compounds, and olefins , 1990 .

[112]  K. Kubota,et al.  Polarizing Film Prepared by Using Linear Poly(2,5-pyridinediyl) , 1989 .

[113]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[114]  K. Domen,et al.  Synthesis and photocatalytic activity of poly(triazine imide). , 2013, Chemistry, an Asian journal.

[115]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[116]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[117]  M. Sisido,et al.  Excimer-like emission from linear π-conjugated poly(pyridine-2,5-diyl) , 1990 .

[118]  K. Yoshino,et al.  Poly(p-phenylene)-catalysed photoreduction of water to hydrogen , 1985 .