High quality factor single-crystal diamond mechanical resonators

Single-crystal diamond is a promising material for microelectromechanical systems (MEMs) because of its low mechanical loss, compatibility with extreme environments, and built-in interface to high-quality spin centers. But its use has been limited by challenges in processing and growth. We demonstrate a wafer bonding-based technique to form diamond on insulator, from which we make single-crystal diamond micromechanical resonators with mechanical quality factors as high as 338 000 at room temperature. Variable temperature measurements down to 10 K reveal a nonmonotonic dependence of quality factor on temperature. These resonators enable integration of single-crystal diamond into MEMs technology for classical and quantum applications.

[1]  L. Childress,et al.  Supporting Online Material for , 2006 .

[2]  T. Kenny,et al.  Noncontact friction and force fluctuations between closely spaced bodies. , 2001, Physical review letters.

[3]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[4]  Igor Aharonovich,et al.  Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing , 2011, Advanced materials.

[5]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[6]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[7]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[8]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[9]  J Walker,et al.  Optical absorption and luminescence in diamond , 1979 .

[10]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[11]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[12]  J. Reithmaier,et al.  Bioproperties of nanocrystalline diamond/amorphous carbon composite films , 2007 .

[13]  M. Roukes,et al.  Ultrasensitive nanoelectromechanical mass detection , 2004, cond-mat/0402528.

[14]  J. Posthill,et al.  Single‐crystal diamond plate liftoff achieved by ion implantation and subsequent annealing , 1992 .

[15]  D. Jaksch,et al.  Entangling Macroscopic Diamonds at Room Temperature , 2011, Science.

[16]  D. D. Awschalom,et al.  Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond , 2005 .

[17]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[18]  Di Liang,et al.  Low-Temperature, Strong SiO2-SiO2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits , 2008 .

[19]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[20]  J. Robinson,et al.  Ultrathin single crystal diamond nanomechanical dome resonators. , 2011, Nano letters.

[21]  M. Cross,et al.  Elastic Wave Transmission at an Abrupt Junction in a Thin Plate, with Application to Heat Transport and Vibrations in Mesoscopic Systems , 2000, cond-mat/0011501.

[22]  C. L. Lee,et al.  Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma , 2008 .

[23]  G. Burkard,et al.  Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. , 2011, Physical review letters.

[24]  Shimon Kolkowitz,et al.  Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit , 2012, Science.

[25]  H. Hosaka,et al.  DAMPING CHARACTERISTICS OF BEAM-SHAPED MICRO-OSCILLATORS , 1995 .

[26]  Laser cooling of a nanomechanical resonator mode to its quantum ground state. , 2003, Physical review letters.

[27]  L. Frydman,et al.  Factors Affecting DNP NMR in Polycrystalline Diamond Samples , 2011 .

[28]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[29]  Harold G. Craighead,et al.  Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography , 1997 .

[30]  M. Liao,et al.  Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems , 2010 .

[31]  Robert W. Carpick,et al.  Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators , 2009 .

[32]  Michael R. Vanner,et al.  Phonon-tunnelling dissipation in mechanical resonators , 2010, Nature communications.

[33]  T. Kenny,et al.  Quality factors in micron- and submicron-thick cantilevers , 2000, Journal of Microelectromechanical Systems.

[34]  L. Sekaric,et al.  Dissipation in nanocrystalline-diamond nanomechanical resonators , 2004 .

[35]  Matthias Schreck,et al.  A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers , 2004 .

[36]  D. Twitchen,et al.  High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond , 2002, Science.

[37]  R. Sussmann,et al.  Optical, thermal and mechanical properties of CVD diamond , 2000 .

[38]  M. Schreck,et al.  Diamond nucleation on iridium buffer layers and subsequent textured growth: A route for the realization of single-crystal diamond films , 2001 .

[39]  J. Field The Properties of Diamond , 1979 .

[40]  John A. Judge,et al.  Attachment losses of high Q oscillators , 2004 .