Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory

[1]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[2]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[3]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[4]  Dongxiang Zhou,et al.  Study of piezoelectric ceramic materials for high-temperature and high-frequency applications , 1998 .

[5]  Ser Tong Quek,et al.  Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator , 2000 .

[6]  Ser Tong Quek,et al.  On dispersion relations in piezoelectric coupled-plate structures , 2000 .

[7]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[8]  C. T. Sun,et al.  Analysis of piezoelectric coupled circular plate , 2001 .

[9]  Quan Wang,et al.  Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer , 2002 .

[10]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[11]  Quan Wang ON BUCKLING OF COLUMN STRUCTURES WITH A PAIR OF PIEZOELECTRIC LAYERS , 2002 .

[12]  H. J. Ding,et al.  Analytical solution of a special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric plane strain dynamic problems , 2004, Appl. Math. Comput..

[13]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[14]  Haiyan Hu,et al.  FLEXURAL WAVE PROPAGATION IN SINGLE-WALLED CARBON NANOTUBES , 2005 .

[15]  T. Shrout,et al.  Piezoelectric materials for high power, high temperature applications , 2005 .

[16]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[17]  Shou-wen Yu,et al.  Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring , 2006 .

[18]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[19]  R. Cook,et al.  Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires , 2007 .

[20]  J. M. Gray,et al.  High-Q GaN nanowire resonators and oscillators , 2007 .

[21]  S. Lee,et al.  Electro-elastic analysis of piezoelectric laminated plates , 2007 .

[22]  Zhong Lin Wang,et al.  Piezoelectric gated diode of a single zno nanowire , 2007 .

[23]  Marek Pietrzakowski,et al.  Piezoelectric control of composite plate vibration: Effect of electric potential distribution , 2008 .

[24]  S. Kitipornchai,et al.  Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory , 2009 .

[25]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[26]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[27]  S. C. Pradhan,et al.  Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory , 2010 .

[28]  Jie Yang,et al.  Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory , 2010 .

[29]  Hui‐Shen Shen,et al.  Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model , 2010 .

[30]  M. Şi̇mşek,et al.  VIBRATION ANALYSIS OF A SINGLE-WALLED CARBON NANOTUBE UNDER ACTION OF A MOVING HARMONIC LOAD BASED ON NONLOCAL ELASTICITY THEORY , 2010 .

[31]  J. Reddy Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates , 2010 .

[32]  Liying Jiang,et al.  The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects , 2011, Nanotechnology.

[33]  Gregory J. Ehlert,et al.  Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers , 2011 .

[34]  Zhong Lin Wang,et al.  One-dimensional ZnO nanostructures: Solution growth and functional properties , 2011 .

[35]  Liying Jiang,et al.  Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires , 2011 .

[36]  Hui‐Shen Shen Nonlocal plate model for nonlinear analysis of thin films on elastic foundations in thermal environments , 2011 .

[37]  S. Narendar,et al.  Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects , 2011 .

[38]  S. C. Pradhan,et al.  Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method , 2011 .

[39]  K. Liew,et al.  WAVE PROPAGATION IN GRAPHENE SHEETS WITH NONLOCAL ELASTIC THEORY VIA FINITE ELEMENT FORMULATION , 2012 .

[40]  A. G. Arani,et al.  Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory , 2012 .

[41]  Guo-Jin Tang,et al.  Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory , 2012 .

[42]  A. G. Arani,et al.  Electro-thermal non-local vibration analysis of embedded DWBNNTs , 2012 .

[43]  Liying Jiang,et al.  Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness , 2012 .

[44]  L. Ke,et al.  Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory , 2012 .

[45]  L. Ke,et al.  Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory , 2012 .

[46]  L. Jiang,et al.  Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Mesut Şimşek,et al.  Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory , 2013 .